TY - GEN A1 - Verch, Ronald A1 - Stoll, Josefine A1 - Hadzic, Miralem A1 - Quarmby, Andrew James A1 - Völler, Heinz T1 - Whole-Body EMS Superimposed Walking and Nordic Walking on a Treadmill—Determination of Exercise Intensity to Conventional Exercise T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Electrical muscle stimulation (EMS) is an increasingly popular training method and has become the focus of research in recent years. New EMS devices offer a wide range of mobile applications for whole-body EMS (WB-EMS) training, e.g., the intensification of dynamic low-intensity endurance exercises through WB-EMS. The present study aimed to determine the differences in exercise intensity between WB-EMS-superimposed and conventional walking (EMS-CW), and CON and WB-EMS-superimposed Nordic walking (WB-EMS-NW) during a treadmill test. Eleven participants (52.0 ± years; 85.9 ± 7.4 kg, 182 ± 6 cm, BMI 25.9 ± 2.2 kg/m2) performed a 10 min treadmill test at a given velocity (6.5 km/h) in four different test situations, walking (W) and Nordic walking (NW) in both conventional and WB-EMS superimposed. Oxygen uptake in absolute (VO2) and relative to body weight (rel. VO2), lactate, and the rate of perceived exertion (RPE) were measured before and after the test. WB-EMS intensity was adjusted individually according to the feedback of the participant. The descriptive statistics were given in mean ± SD. For the statistical analyses, one-factorial ANOVA for repeated measures and two-factorial ANOVA [factors include EMS, W/NW, and factor combination (EMS*W/NW)] were performed (α = 0.05). Significant effects were found for EMS and W/NW factors for the outcome variables VO2 (EMS: p = 0.006, r = 0.736; W/NW: p < 0.001, r = 0.870), relative VO2 (EMS: p < 0.001, r = 0.850; W/NW: p < 0.001, r = 0.937), and lactate (EMS: p = 0.003, r = 0.771; w/NW: p = 0.003, r = 0.764) and both the factors produced higher results. However, the difference in VO2 and relative VO2 is within the range of biological variability of ± 12%. The factor combination EMS*W/NW is statistically non-significant for all three variables. WB-EMS resulted in the higher RPE values (p = 0.035, r = 0.613), RPE differences for W/NW and EMS*W/NW were not significant. The current study results indicate that WB-EMS influences the parameters of exercise intensity. The impact on exercise intensity and the clinical relevance of WB-EMS-superimposed walking (WB-EMS-W) exercise is questionable because of the marginal differences in the outcome variables. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 760 KW - electrical muscle stimulation KW - walking KW - Nordic walking KW - treadmill KW - exercise intensity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549575 SN - 1866-8364 SP - 1 EP - 9 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Verch, Ronald A1 - Stoll, Josefine A1 - Hadzic, Miralem A1 - Quarmby, Andrew James A1 - Völler, Heinz T1 - Whole-Body EMS Superimposed Walking and Nordic Walking on a Treadmill—Determination of Exercise Intensity to Conventional Exercise JF - Frontiers in physiology / Frontiers Research Foundation N2 - Electrical muscle stimulation (EMS) is an increasingly popular training method and has become the focus of research in recent years. New EMS devices offer a wide range of mobile applications for whole-body EMS (WB-EMS) training, e.g., the intensification of dynamic low-intensity endurance exercises through WB-EMS. The present study aimed to determine the differences in exercise intensity between WB-EMS-superimposed and conventional walking (EMS-CW), and CON and WB-EMS-superimposed Nordic walking (WB-EMS-NW) during a treadmill test. Eleven participants (52.0 ± years; 85.9 ± 7.4 kg, 182 ± 6 cm, BMI 25.9 ± 2.2 kg/m2) performed a 10 min treadmill test at a given velocity (6.5 km/h) in four different test situations, walking (W) and Nordic walking (NW) in both conventional and WB-EMS superimposed. Oxygen uptake in absolute (VO2) and relative to body weight (rel. VO2), lactate, and the rate of perceived exertion (RPE) were measured before and after the test. WB-EMS intensity was adjusted individually according to the feedback of the participant. The descriptive statistics were given in mean ± SD. For the statistical analyses, one-factorial ANOVA for repeated measures and two-factorial ANOVA [factors include EMS, W/NW, and factor combination (EMS*W/NW)] were performed (α = 0.05). Significant effects were found for EMS and W/NW factors for the outcome variables VO2 (EMS: p = 0.006, r = 0.736; W/NW: p < 0.001, r = 0.870), relative VO2 (EMS: p < 0.001, r = 0.850; W/NW: p < 0.001, r = 0.937), and lactate (EMS: p = 0.003, r = 0.771; w/NW: p = 0.003, r = 0.764) and both the factors produced higher results. However, the difference in VO2 and relative VO2 is within the range of biological variability of ± 12%. The factor combination EMS*W/NW is statistically non-significant for all three variables. WB-EMS resulted in the higher RPE values (p = 0.035, r = 0.613), RPE differences for W/NW and EMS*W/NW were not significant. The current study results indicate that WB-EMS influences the parameters of exercise intensity. The impact on exercise intensity and the clinical relevance of WB-EMS-superimposed walking (WB-EMS-W) exercise is questionable because of the marginal differences in the outcome variables. KW - electrical muscle stimulation KW - walking KW - Nordic walking KW - treadmill KW - exercise intensity Y1 - 2021 U6 - https://doi.org/10.3389/fphys.2021.715417 SN - 1664-042X VL - 12 SP - 1 EP - 9 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER - TY - CHAP A1 - Torlak, Firdevs A1 - Torlak, Firdevs A1 - Appiah-Dwomoh, Edem Korkor A1 - Engel, Tilman A1 - Stoll, Josefine A1 - Müller, Juliane A1 - Mayer, Frank T1 - Gender differences in lower leg muscular activity during provoked stumbling - a pilot study T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2014 SN - 0195-9131 SN - 1530-0315 VL - 46 IS - 5 SP - 728 EP - 728 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - THES A1 - Stoll, Josefine T1 - Gesundheitsmonitoring im Langstreckenmotorsport T1 - Pre Participation Examination in Long distance Race car drivers BT - eine Analyse von Athletenprofilen, häufigen Beschwerden und deren Ableitung für präventive Trainingsprogramme im Quer- und Längsschnitt N2 - Professionelle GT Langstreckenmotorsportler (Rennfahrer) müssen den hohen motorischen und kognitiven Ansprüchen ohne Verlust der Performance während eines Rennens endgegenwirken können. Sie müssen stets, bei hoher Geschwindigkeit fokussiert und konzentriert auf ihr Auto, die Rennstrecke und ihre Gegner reagieren können. Darüber hinaus sind Rennfahrer zusätzlich durch die notwendige Kommunikation im Auto mit den Ingenieuren und Mechanikern in der Boxengasse gefordert. Daten über die tatsächliche Beanspruchung und häufig auftretende Beschwerden und/oder Verletzung von Profiathleten liegen kaum vor. Für eine möglichst gute Performance im Auto während eines Rennens ist es notwendige neben der körperlichen Beanspruchung auch die häufigen Krankheitsbilder zu kennen. Auf Basis dessen kann eine optimale Prävention oder notwendige Therapie zur möglichst schnellen Reintegration in den Sport abgeleitet und entwickelt werden. Die vorliegende Arbeit befasst sich durch ein regelmäßiges Gesundheitsmonitoring mit der Erfassung häufiger Beschwerden und oder Verletzungen im GT Langestreckenmotorsport zur Ableitung eines präventiven (trainingstherapeutischen) und therapeutischen Konzeptes. Darüber hinaus, soll über die Einschätzung der körperlichen Leistungsfähigkeit der Athleten, auf Basis der Beanspruchung im Rennfahrzeug ein mögliches Trainingskonzept in Abhängigkeit der Saison entwickelt werden. Insgesamt wurden über 15 Jahre (2003-2017) 37 männliche Athleten aus dem GT Langstreckenmotorsport 353mal im Rahmen eines Gesundheitsmonitorings untersucht. Dabei wurden Athleten maximal 14 Jahre und mindestens 1 Jahr sportmedizinische betreut. Diese 2x im Jahr stattfindende Untersuchung beinhaltete im Wesentlichen eine sportmedizinische Untersuchung zur Einschätzung der Tauglichkeit für den Sport und die Erfassung der körperlichen Leistungsfähigkeit. Über das Gesundheitsmonitoring hinaus erfolgte die Betreuung zusätzlich an der Rennstrecke zur weiteren Erfassung der Beschwerden, Erkrankungen und Verletzungen der Athleten während ihrer sportartspezifischen Belastung. Zusammengefasst zeigen die Athleten geringe Prävalenzen und Inzidenzen der Krankheitsbilder bzw. Beschwerden. Ein Unterschied der Prävalenzen zeigt sich zwischen den Gesundheitsuntersuchungen und der Betreuung an der Rennstrecke. Die häufigsten Beschwerdebilder zeigen sich aus Orthopädie und Innerer Medizin. So sind Infekte der oberen Atemwege sowie Allergien neben Beschwerden der unteren Extremität und der Wirbelsäule am häufigsten. Demzufolge werden vorrangig physio- und trainingstherapeutische Konsequenzen abgeleitet. Eine medikamentöse Therapie erfolgt im Wesentlichen während der Rennbetreuung. Zur Reduktion der orthopädischen und internistischen Beschwerden sollten präventive Maßnahmen mehr betont werden. Die körperliche Leistungsfähigkeit zeigt im Wesentlichen über die Untersuchungsjahre eine stabile Performance für die Ausdauer-, Kraft und sensomotorische Leistungsfähigkeit. Die Ausdauerleistungsfähigkeit kann in Abhängigkeit der Sportartspezifik mit einer guten bis sehr guten Ausprägung definiert werden. Die Kraftleistungsfähigkeit und die sensomotorische Leistungsfähigkeit lassen sportartspezifische Unterschiede zu und sollte körpergewichtsbezogen betrachtet werden. Ein sportmedizinisches und trainingstherapeutisches Konzept müsste demnach eine regelmäßige ärztlich-medizinische Untersuchung mit dem Fokus der Orthopädie, Inneren Medizin und Hals- Nasen-Ohren-Kunde beinhalten. Darüber hinaus sollte eine regelmäßige Erfassung der körperlichen Leistungsfähigkeit zur möglichst effektiven Ableitung von Trainingsinhalten oder Präventionsmaßnahmen berücksichtig werden. Auf Grundlage der hohen Reisetätigkeit und der ganzjährigen Saison könnte ein 1-2x jährlich stattfindendes Trainingslager, im Sinne eines Grundlagen- und Aufbautrainings zur Optimierung der Leistungsfähigkeit beitragen, das Konzept komplementieren. Zudem scheint eine ärztliche Rennbetreuung notwendig. N2 - Professional long distance race car drivers (GT- Sportscars) are highly challenged regarding physical load during racing without any lost of performance. It is needed that those athletes are able to react in time in addiction to high speed and other race car drivers on the track. Studies about common injuries or overuse are rare and not longitudinal analysed. Based on known sports specific injuries or overuse, necessary prevention strategies or therapy concept are helpful for an evident Return to Sport. This study is based on prospective longitudinal Analyses of common injuries and overuse in professional race car drivers with differentiation to prevention and therapeutic concepts. Additionally, based on physical capacity (endurance, strength, sensorymotor- control) a needed training recommendation is derived. Overall 37 male professional longdistance race car drivers were analysed over 15 years (2003-2017). Therefore 353 preparticipation examinations (PPE) and physical fitness tests were included. The number of Athletes ranged between 6-19 per year with a support from 1 to 15 years. Additionally to the PPE and physical fitness tests the needed medical care at the track during race were analysed for the years 2015 and 2016. Summarized, longdistance race car drivers are showing low Prevalence’s of injuries or overuse. Frequent complaints are infections of the upper respiratory tract, allergies and tendinopathy of the lower limb together with chronic unspecific low back pain. The therapeutic derivation on track was for the most part drug-treated. A useful consequence for the reduction of the common orthopedic and internistic complaints are preventive methods like aerobic endurance training, sleep hygiene, (eccentric) strength training and balance training. The physical capacite is stable over the years. The endurance capacity shows in dependence to the sports specific a good capacity. The strength and sensorymotor control capacity shows sports specific differences. A sports medical and preventive/ therapeutic concept in longdistance motorsports has to include regular PPE with focus on orthopedic and internistic examinations. Additionally a regularly measurement of the physical capacity (endurance, strength and sensorymotor control) is needed for evident and individual recommendations for training and prevention. Regarding the high all year intercontinental travelling and the season over the whole year a 1-2 times organized fitness camp could compliment a sports medical concept as well as medical care on the track. KW - Langstreckenmotorsport KW - Gesundheitsmonitoring KW - Prävention KW - Race car driver KW - Pre participation examination KW - race car driver KW - prevention KW - longdistance racing Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-420880 ER - TY - GEN A1 - Risch, Lucie A1 - Stoll, Josefine A1 - Schomöller, Anne A1 - Engel, Tilman A1 - Mayer, Frank A1 - Cassel, Michael T1 - Intraindividual Doppler Flow Response to Exercise Differs Between Symptomatic and Asymptomatic Achilles Tendons T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Objective: This study investigated intraindividual differences of intratendinous blood flow (IBF) in response to running exercise in participants with Achilles tendinopathy. Design: This is a cross-sectional study. Setting: The study was conducted at the University Outpatient Clinic. Participants: Sonographic detectable intratendinous blood flow was examined in symptomatic and contralateral asymptomatic Achilles tendons of 19 participants (42 ± 13 years, 178 ± 10 cm, 76 ± 12 kg, VISA-A 75 ± 16) with clinically diagnosed unilateral Achilles tendinopathy and sonographic evident tendinosis. Intervention: IBF was assessed using Doppler ultrasound “Advanced Dynamic Flow” before (Upre) and 5, 30, 60, and 120 min (U5–U120) after a standardized submaximal constant load run. Main Outcome Measure: IBF was quantified by counting the number (n) of vessels in each tendon. Results: At Upre, IBF was higher in symptomatic compared with asymptomatic tendons [mean 6.3 (95% CI: 2.8–9.9) and 1.7 (0.4–2.9), p < 0.01]. Overall, 63% of symptomatic and 47% of asymptomatic Achilles tendons responded to exercise, whereas 16 and 11% showed persisting IBF and 21 and 42% remained avascular throughout the investigation. At U5, IBF increased in both symptomatic and asymptomatic tendons [difference to baseline: 2.4 (0.3–4.5) and 0.9 (0.5–1.4), p = 0.05]. At U30 to U120, IBF was still increased in symptomatic but not in asymptomatic tendons [mean difference to baseline: 1.9 (0.8–2.9) and 0.1 (-0.9 to 1.2), p < 0.01]. Conclusion: Irrespective of pathology, 47–63% of Achilles tendons responded to exercise with an immediate acute physiological IBF increase by an average of one to two vessels (“responders”). A higher amount of baseline IBF (approximately five vessels) and a prolonged exercise-induced IBF response found in symptomatic ATs indicate a pain-associated altered intratendinous “neovascularization.” T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 746 KW - achilles tendinopathy KW - tendinosis KW - neovascularization KW - ultrasound KW - advanced dynamic flow KW - sonography Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-542865 SN - 1866-8364 SP - 1 EP - 8 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Risch, Lucie A1 - Stoll, Josefine A1 - Schomöller, Anne A1 - Engel, Tilman A1 - Mayer, Frank A1 - Cassel, Michael T1 - Intraindividual Doppler Flow Response to Exercise Differs Between Symptomatic and Asymptomatic Achilles Tendons JF - Frontiers in physiology N2 - Objective: This study investigated intraindividual differences of intratendinous blood flow (IBF) in response to running exercise in participants with Achilles tendinopathy. Design: This is a cross-sectional study. Setting: The study was conducted at the University Outpatient Clinic. Participants: Sonographic detectable intratendinous blood flow was examined in symptomatic and contralateral asymptomatic Achilles tendons of 19 participants (42 ± 13 years, 178 ± 10 cm, 76 ± 12 kg, VISA-A 75 ± 16) with clinically diagnosed unilateral Achilles tendinopathy and sonographic evident tendinosis. Intervention: IBF was assessed using Doppler ultrasound “Advanced Dynamic Flow” before (Upre) and 5, 30, 60, and 120 min (U5–U120) after a standardized submaximal constant load run. Main Outcome Measure: IBF was quantified by counting the number (n) of vessels in each tendon. Results: At Upre, IBF was higher in symptomatic compared with asymptomatic tendons [mean 6.3 (95% CI: 2.8–9.9) and 1.7 (0.4–2.9), p < 0.01]. Overall, 63% of symptomatic and 47% of asymptomatic Achilles tendons responded to exercise, whereas 16 and 11% showed persisting IBF and 21 and 42% remained avascular throughout the investigation. At U5, IBF increased in both symptomatic and asymptomatic tendons [difference to baseline: 2.4 (0.3–4.5) and 0.9 (0.5–1.4), p = 0.05]. At U30 to U120, IBF was still increased in symptomatic but not in asymptomatic tendons [mean difference to baseline: 1.9 (0.8–2.9) and 0.1 (-0.9 to 1.2), p < 0.01]. Conclusion: Irrespective of pathology, 47–63% of Achilles tendons responded to exercise with an immediate acute physiological IBF increase by an average of one to two vessels (“responders”). A higher amount of baseline IBF (approximately five vessels) and a prolonged exercise-induced IBF response found in symptomatic ATs indicate a pain-associated altered intratendinous “neovascularization.” KW - achilles tendinopathy KW - tendinosis KW - neovascularization KW - ultrasound KW - advanced dynamic flow KW - sonography Y1 - 2021 U6 - https://doi.org/10.3389/fphys.2021.617497 SN - 1664-042X VL - 12 SP - 1 EP - 8 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER - TY - GEN A1 - Plummer, Ashley A1 - Mugele, Hendrik A1 - Steffen, Kathrin A1 - Stoll, Josefine A1 - Mayer, Frank A1 - Müller, Juliane T1 - General versus sports-specific injury prevention programs in athletes BT - A systematic review on the effects on performance T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Introduction Injury prevention programs (IPPs) are an inherent part of training in recreational and professional sports. Providing performance-enhancing benefits in addition to injury prevention may help adjust coaches and athletes’ attitudes towards implementation of injury prevention into daily routine. Conventional thinking by players and coaches alike seems to suggest that IPPs need to be specific to one’s sport to allow for performance enhancement. The systematic literature review aims to firstly determine the IPPs nature of exercises and whether they are specific to the sport or based on general conditioning. Secondly, can they demonstrate whether general, sports-specific or even mixed IPPs improve key performance indicators with the aim to better facilitate long-term implementation of these programs? Methods PubMed and Web of Science were electronically searched throughout March 2018. The inclusion criteria were randomized control trials, publication dates between Jan 2006 and Feb 2018, athletes (11–45 years), injury prevention programs and included predefined performance measures that could be categorized into balance, power, strength, speed/agility and endurance. The methodological quality of included articles was assessed with the Cochrane Collaboration assessment tools. Results Of 6619 initial findings, 22 studies met the inclusion criteria. In addition, reference lists unearthed a further 6 studies, making a total of 28. Nine studies used sports specific IPPs, eleven general and eight mixed prevention strategies. Overall, general programs ranged from 29–57% in their effectiveness across performance outcomes. Mixed IPPs improved in 80% balance outcomes but only 20–44% in others. Sports-specific programs led to larger scale improvements in balance (66%), power (83%), strength (75%), and speed/agility (62%). Conclusion Sports-specific IPPs have the strongest influence on most performance indices based on the significant improvement versus control groups. Other factors such as intensity, technical execution and compliance should be accounted for in future investigations in addition to exercise modality. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 591 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441131 SN - 1866-8364 IS - 591 ER - TY - JOUR A1 - Plummer, Ashley A1 - Mugele, Hendrik A1 - Steffen, Kathrin A1 - Stoll, Josefine A1 - Mayer, Frank A1 - Müller, Juliane T1 - General versus sports-specific injury prevention programs in athletes BT - A systematic review on the effects on performance JF - PLoS ONE N2 - Introduction Injury prevention programs (IPPs) are an inherent part of training in recreational and professional sports. Providing performance-enhancing benefits in addition to injury prevention may help adjust coaches and athletes’ attitudes towards implementation of injury prevention into daily routine. Conventional thinking by players and coaches alike seems to suggest that IPPs need to be specific to one’s sport to allow for performance enhancement. The systematic literature review aims to firstly determine the IPPs nature of exercises and whether they are specific to the sport or based on general conditioning. Secondly, can they demonstrate whether general, sports-specific or even mixed IPPs improve key performance indicators with the aim to better facilitate long-term implementation of these programs? Methods PubMed and Web of Science were electronically searched throughout March 2018. The inclusion criteria were randomized control trials, publication dates between Jan 2006 and Feb 2018, athletes (11–45 years), injury prevention programs and included predefined performance measures that could be categorized into balance, power, strength, speed/agility and endurance. The methodological quality of included articles was assessed with the Cochrane Collaboration assessment tools. Results Of 6619 initial findings, 22 studies met the inclusion criteria. In addition, reference lists unearthed a further 6 studies, making a total of 28. Nine studies used sports specific IPPs, eleven general and eight mixed prevention strategies. Overall, general programs ranged from 29–57% in their effectiveness across performance outcomes. Mixed IPPs improved in 80% balance outcomes but only 20–44% in others. Sports-specific programs led to larger scale improvements in balance (66%), power (83%), strength (75%), and speed/agility (62%). Conclusion Sports-specific IPPs have the strongest influence on most performance indices based on the significant improvement versus control groups. Other factors such as intensity, technical execution and compliance should be accounted for in future investigations in addition to exercise modality. Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0221346 SN - 1932-6203 VL - 14 IS - 8 PB - PLOS 1 CY - San Francisco ER - TY - JOUR A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Müller, Juliane A1 - Mayer, Frank T1 - Validity of isokinetic trunk measurements with respect to healthy adults, athletes and low back pain patients JF - Isokinetics and exercise science : official journal of the European Isokinetic Society N2 - Background: Isokinetic measurements are widely used to assess strength capacity in a clinical or research context. Nevertheless, the validity of isokinetic measures for identifying strength deficits and the evaluation of therapeutic process regarding different pathologies is yet to be established. Therefore, the purpose of this review is to evaluate the validity of isokinetic measures in a specific case: that of muscular capacity in low back pain (LBP). Methods: A literature search (PubMed; ISI Web of Knowledge; The Cochrane Library) covering the last 10 years was performed. Relevant papers regarding isokinetic trunk strength measures in healthy and patients with low back pain (PLBP) were searched. Peak torque values [Nm] and peak torque normalized to body weight [Nm/kg BW] were extracted for healthy and PLBP. Ranked mean values across studies were calculated for the concentric peak torque at 60 degrees/s as well as the flexion/extension (F/E) ratio. Results: 34 publications (31 flexion/extension; 3 rotation) were suitable for reporting detailed isokinetic strength measures in healthy or LBP (untrained adults, adolescents, athletes). Adolescents and athletes were different compared to normal adults in terms of absolute trunk strength values and the F/E ratio. Furthermore, isokinetic measures evaluating therapeutic process and isokinetic rehabilitation training were infrequent in literature (8 studies). Conclusion: Isokinetic measurements are valid for measuring trunk flexion/extension strength and F/E ratio in athletes, adolescents and (untrained) adults with/without LBP. The validity of trunk rotation is questionable due to a very small number of publications whereas no reliable source regarding lateral flexion could be traced. Therefore, isokinetic dynamometry may be utilized for identifying trunk strength deficits in healthy adults and PLBP. KW - Isokinetic KW - validity KW - low back pain KW - peak torque KW - trunk Y1 - 2012 U6 - https://doi.org/10.3233/IES-2012-00482 SN - 0959-3020 VL - 20 IS - 4 SP - 255 EP - 266 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Mueller, Juliane A1 - Cassel, Michael A1 - Mayer, Frank T1 - Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain JF - Frontiers in physiology N2 - In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (NBP). Eleven adolescent athletes suffering back pain (BP: m/f: n = 4/7; 15.9 +/- 1.3 y; 176 +/- 11 cm; 68 +/- 11 kg; 12.4 +/- 10.5 h/we training) and 11 matched athletes without back pain (NBP: m/f: n = 4/7; 15.5 +/- 1.3 y; 174 +/- 7 cm; 67 +/- 8 kg; 14.9 +/- 9.5 h/we training) were evaluated. Subjects conducted 3 drop jumps onto a force plate (ground reaction force). Bilateral 12-lead SEMG (surface Electromyography) was applied to assess trunk muscle activity. Ground contact time [ms], maximum vertical jump force [N], jump time [ms] and the jump performance index [m/s] were calculated for drop jumps. SEMG amplitudes (RMS: root mean square [%]) for all 12 single muscles were normalized toMIVC (maximum isometric voluntary contraction) and analyzed in 4 time windows (100 ms pre- and 200 ms post-initial ground contact, 100 ms pre- and 200 ms post-landing) as outcome variables. In addition, muscles were grouped and analyzed in ventral and dorsal muscles, as well as straight and transverse trunk muscles. Drop jump ground reaction force variables did not differ between NBP and BP (p > 0.05). Mm obliquus externus and internus abdominis presented higher SEMG amplitudes (1.3-1.9-fold) for BP (p < 0.05). Mm rectus abdominis, erector spinae thoracic/lumbar and latissimus dorsi did not differ (p > 0.05). The muscle group analysis over the whole jumping cycle showed statistically significantly higher SEMG amplitudes for BP in the ventral (p = 0.031) and transverse muscles (p = 0.020) compared to NBP. Higher activity of transverse, but not straight, trunk muscles might indicate a specific compensation strategy to support trunk stability in athletes with back pain during drop jumps. Therefore, exercises favoring the transverse trunk muscles could be recommended for back pain treatment. KW - SEMG-pattern KW - back pain KW - pre-activity KW - drop jump KW - neuromuscular KW - trunk KW - performance KW - young athletes Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00274 SN - 1664-042X VL - 8 SP - 124 EP - 132 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Cassel, Michael A1 - Mayer, Frank T1 - Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain N2 - In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (NBP). Eleven adolescent athletes suffering back pain (BP: m/f: n = 4/7; 15.9 ± 1.3 y; 176 ± 11 cm; 68 ± 11 kg; 12.4 ± 10.5 h/we training) and 11 matched athletes without back pain (NBP: m/f: n = 4/7; 15.5 ± 1.3 y; 174 ± 7 cm; 67 ± 8 kg; 14.9 ± 9.5 h/we training) were evaluated. Subjects conducted 3 drop jumps onto a force plate (ground reaction force). Bilateral 12-lead SEMG (surface Electromyography) was applied to assess trunk muscle activity. Ground contact time [ms], maximum vertical jump force [N], jump time [ms] and the jump performance index [m/s] were calculated for drop jumps. SEMG amplitudes (RMS: root mean square [%]) for all 12 single muscles were normalized to MIVC (maximum isometric voluntary contraction) and analyzed in 4 time windows (100 ms pre- and 200 ms post-initial ground contact, 100 ms pre- and 200 ms post-landing) as outcome variables. In addition, muscles were grouped and analyzed in ventral and dorsal muscles, as well as straight and transverse trunk muscles. Drop jump ground reaction force variables did not differ between NBP and BP (p > 0.05). Mm obliquus externus and internus abdominis presented higher SEMG amplitudes (1.3–1.9-fold) for BP (p < 0.05). Mm rectus abdominis, erector spinae thoracic/lumbar and latissimus dorsi did not differ (p > 0.05). The muscle group analysis over the whole jumping cycle showed statistically significantly higher SEMG amplitudes for BP in the ventral (p = 0.031) and transverse muscles (p = 0.020) compared to NBP. Higher activity of transverse, but not straight, trunk muscles might indicate a specific compensation strategy to support trunk stability in athletes with back pain during drop jumps. Therefore, exercises favoring the transverse trunk muscles could be recommended for back pain treatment. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 319 KW - SEMG-pattern KW - back pain KW - drop jump KW - neuromuscular KW - performance KW - pre-activity KW - trunk KW - young athletes Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395261 ER - TY - JOUR A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Cassel, Michael A1 - Mayer, Frank T1 - Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain JF - Frontiers in physiology N2 - In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (NBP). Eleven adolescent athletes suffering back pain (BP: m/f: n = 4/7; 15.9 ± 1.3 y; 176 ± 11 cm; 68 ± 11 kg; 12.4 ± 10.5 h/we training) and 11 matched athletes without back pain (NBP: m/f: n = 4/7; 15.5 ± 1.3 y; 174 ± 7 cm; 67 ± 8 kg; 14.9 ± 9.5 h/we training) were evaluated. Subjects conducted 3 drop jumps onto a force plate (ground reaction force). Bilateral 12-lead SEMG (surface Electromyography) was applied to assess trunk muscle activity. Ground contact time [ms], maximum vertical jump force [N], jump time [ms] and the jump performance index [m/s] were calculated for drop jumps. SEMG amplitudes (RMS: root mean square [%]) for all 12 single muscles were normalized to MIVC (maximum isometric voluntary contraction) and analyzed in 4 time windows (100 ms pre- and 200 ms post-initial ground contact, 100 ms pre- and 200 ms post-landing) as outcome variables. In addition, muscles were grouped and analyzed in ventral and dorsal muscles, as well as straight and transverse trunk muscles. Drop jump ground reaction force variables did not differ between NBP and BP (p > 0.05). Mm obliquus externus and internus abdominis presented higher SEMG amplitudes (1.3–1.9-fold) for BP (p < 0.05). Mm rectus abdominis, erector spinae thoracic/lumbar and latissimus dorsi did not differ (p > 0.05). The muscle group analysis over the whole jumping cycle showed statistically significantly higher SEMG amplitudes for BP in the ventral (p = 0.031) and transverse muscles (p = 0.020) compared to NBP. Higher activity of transverse, but not straight, trunk muscles might indicate a specific compensation strategy to support trunk stability in athletes with back pain during drop jumps. Therefore, exercises favoring the transverse trunk muscles could be recommended for back pain treatment. KW - SEMG-pattern KW - back pain KW - pre-activity KW - drop jump KW - neuromuscular KW - trunk KW - performance KW - young athletes Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00274 SN - 1664-042X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Müller, Steffen A1 - Müller, Juliane A1 - Stoll, Josefine A1 - Prieske, Olaf A1 - Cassel, Michael A1 - Mayer, Frank T1 - Incidence of back pain in adolescent athletes BT - a prospective study JF - BMC sports science, medicine & rehabilitation N2 - Background Recently, the incidence rate of back pain (BP) in adolescents has been reported at 21%. However, the development of BP in adolescent athletes is unclear. Hence, the purpose of this study was to examine the incidence of BP in young elite athletes in relation to gender and type of sport practiced. Methods Subjective BP was assessed in 321 elite adolescent athletes (m/f 57%/43%; 13.2 ± 1.4 years; 163.4 ± 11.4 cm; 52.6 ± 12.6 kg; 5.0 ± 2.6 training yrs; 7.6 ± 5.3 training h/week). Initially, all athletes were free of pain. The main outcome criterion was the incidence of back pain [%] analyzed in terms of pain development from the first measurement day (M1) to the second measurement day (M2) after 2.0 ± 1.0 year. Participants were classified into athletes who developed back pain (BPD) and athletes who did not develop back pain (nBPD). BP (acute or within the last 7 days) was assessed with a 5-step face scale (face 1–2 = no pain; face 3–5 = pain). BPD included all athletes who reported faces 1 and 2 at M1 and faces 3 to 5 at M2. nBPD were all athletes who reported face 1 or 2 at both M1 and M2. Data was analyzed descriptively. Additionally, a Chi2 test was used to analyze gender- and sport-specific differences (p = 0.05). Results Thirty-two athletes were categorized as BPD (10%). The gender difference was 5% (m/f: 12%/7%) but did not show statistical significance (p = 0.15). The incidence of BP ranged between 6 and 15% for the different sport categories. Game sports (15%) showed the highest, and explosive strength sports (6%) the lowest incidence. Anthropometrics or training characteristics did not significantly influence BPD (p = 0.14 gender to p = 0.90 sports; r2 = 0.0825). Conclusions BP incidence was lower in adolescent athletes compared to young non-athletes and even to the general adult population. Consequently, it can be concluded that high-performance sports do not lead to an additional increase in back pain incidence during early adolescence. Nevertheless, back pain prevention programs should be implemented into daily training routines for sport categories identified as showing high incidence rates. KW - Pain occurrence KW - Young athletes KW - Injury KW - Training volume Y1 - 2016 U6 - https://doi.org/10.1186/s13102-016-0064-7 SN - 2052-1847 VL - 8 PB - BioMed Central CY - London ER - TY - GEN A1 - Müller, Steffen A1 - Müller, Juliane A1 - Stoll, Josefine A1 - Prieske, Olaf A1 - Cassel, Michael A1 - Mayer, Frank T1 - Incidence of back pain in adolescent athletes BT - a prospective study N2 - Background Recently, the incidence rate of back pain (BP) in adolescents has been reported at 21%. However, the development of BP in adolescent athletes is unclear. Hence, the purpose of this study was to examine the incidence of BP in young elite athletes in relation to gender and type of sport practiced. Methods Subjective BP was assessed in 321 elite adolescent athletes (m/f 57%/43%; 13.2 ± 1.4 years; 163.4 ± 11.4 cm; 52.6 ± 12.6 kg; 5.0 ± 2.6 training yrs; 7.6 ± 5.3 training h/week). Initially, all athletes were free of pain. The main outcome criterion was the incidence of back pain [%] analyzed in terms of pain development from the first measurement day (M1) to the second measurement day (M2) after 2.0 ± 1.0 year. Participants were classified into athletes who developed back pain (BPD) and athletes who did not develop back pain (nBPD). BP (acute or within the last 7 days) was assessed with a 5-step face scale (face 1–2 = no pain; face 3–5 = pain). BPD included all athletes who reported faces 1 and 2 at M1 and faces 3 to 5 at M2. nBPD were all athletes who reported face 1 or 2 at both M1 and M2. Data was analyzed descriptively. Additionally, a Chi2 test was used to analyze gender- and sport-specific differences (p = 0.05). Results Thirty-two athletes were categorized as BPD (10%). The gender difference was 5% (m/f: 12%/7%) but did not show statistical significance (p = 0.15). The incidence of BP ranged between 6 and 15% for the different sport categories. Game sports (15%) showed the highest, and explosive strength sports (6%) the lowest incidence. Anthropometrics or training characteristics did not significantly influence BPD (p = 0.14 gender to p = 0.90 sports; r2 = 0.0825). Conclusions BP incidence was lower in adolescent athletes compared to young non-athletes and even to the general adult population. Consequently, it can be concluded that high-performance sports do not lead to an additional increase in back pain incidence during early adolescence. Nevertheless, back pain prevention programs should be implemented into daily training routines for sport categories identified as showing high incidence rates. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 310 KW - Injury KW - Pain occurrence KW - Training volume KW - Young athletes Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-101874 ER - TY - CHAP A1 - Müller, Steffen A1 - Cassel, Michael A1 - Müller, Juliane A1 - Stoll, Josefine A1 - Baur, Heiner A1 - Mayer, Frank T1 - Trunk strength in adolescent athletes with Spondylolisthesis with/without back pain during training: Pilot study T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2014 SN - 0195-9131 SN - 1530-0315 VL - 46 IS - 5 SP - 642 EP - 642 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Müller, Juliane A1 - Stoll, Josefine A1 - Mueller, Steffen A1 - Mayer, Frank T1 - Dose-response relationship of core-specific sensorimotor interventions in healthy, well-trained participants BT - study protocol for a (MiSpEx) randomized controlled trial JF - Trials N2 - Background: Core-specific sensorimotor exercises are proven to enhance neuromuscular activity of the trunk, improve athletic performance and prevent back pain. However, the dose-response relationship and, therefore, the dose required to improve trunk function is still under debate. The purpose of the present trial will be to compare four different intervention strategies of sensorimotor exercises that will result in improved trunk function. Discussion: The results of the study will be clinically relevant, not only for researchers but also for (sports) therapists, physicians, coaches, athletes and the general population who have the aim of improving trunk function. KW - Sensorimotor training KW - Perturbation KW - Exercise KW - MiSpEx Y1 - 2018 U6 - https://doi.org/10.1186/s13063-018-2799-9 SN - 1745-6215 VL - 19 PB - BMC CY - London ER - TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Rector, Michael V. A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Load on Three-Dimensional Segmental Trunk Kinematics in One-Handed Lifting: A Pilot Study JF - Journal of applied biomechanics N2 - Stability of the trunk is relevant in determining trunk response to different loading in everyday tasks initiated by the limbs. Descriptions of the trunk’s mechanical movement patterns in response to different loads while lifting objects are still under debate. Hence, the aim of this study was to analyze the influence of weight on 3-dimensional segmental motion of the trunk during 1-handed lifting. Ten asymptomatic subjects were included (29 ± 3 y; 1.79 ± 0.09 m; 75 ± 14 kg). Subjects lifted 3× a light and heavy load from the ground up onto a table. Three-dimensional segmental trunk motion was measured (12 markers; 3 segments: upper thoracic area [UTA], lower thoracic area [LTA], lumbar area [LA]). Outcomes were total motion amplitudes (ROM;[°]) for anterior flexion, lateral flexion, and rotation of each segment. The highest ROM was observed in the LTA segment (anterior flexion), and the smallest ROM in the UTA segment (lateral flexion). ROM differed for all planes between the 3 segments for both tasks (P < .001). There were no differences in ROM between light and heavy loads (P > .05). No interaction effects (load × segment) were observed, as ROM did not reveal differences between loading tasks. Regardless of weight, the 3 segments did reflect differences, supporting the relevance of multisegmental analysis. KW - trunk motion KW - kinematic trunk model KW - everyday task KW - MiSpEx* Y1 - 2016 U6 - https://doi.org/10.1123/jab.2015-0227 SN - 1065-8483 SN - 1543-2688 VL - 32 SP - 520 EP - 525 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Fröhlich, K. A1 - Otto, Christoph A1 - Mayer, Frank T1 - Back pain prevalence in adolescent athletes JF - Scandinavian journal of medicine & science in sports N2 - The research aimed to investigate back pain (BP) prevalence in a large cohort of young athletes with respect to age, gender, and sport discipline. BP (within the last 7days) was assessed with a face scale (face 1-2=no pain; face 3-5=pain) in 2116 athletes (m/f 61%/39%; 13.3 +/- 1.7years; 163.0 +/- 11.8cm; 52.6 +/- 13.9kg; 4.9 +/- 2.7 training years; 8.4 +/- 5.7 training h/week). Four different sports categories were devised (a: combat sports, b: game sports; c: explosive strength sport; d: endurance sport). Analysis was described descriptively, regarding age, gender, and sport. In addition, 95% confidence intervals (CI) were calculated. About 168 (8%) athletes were allocated into the BP group. About 9% of females and 7% of males reported BP. Athletes, 11-13years, showed a prevalence of 2-4%; while prevalence increased to 12-20% in 14- to 17-year olds. Considering sport discipline, prevalence ranged from 3% (soccer) to 14% (canoeing). Prevalences in weight lifting, judo, wrestling, rowing, and shooting were 10%; in boxing, soccer, handball, cycling, and horse riding, 6%. 95% CI ranged between 0.08-0.11. BP exists in adolescent athletes, but is uncommon and shows no gender differences. A prevalence increase after age 14 is obvious. Differentiated prevention programs in daily training routines might address sport discipline-specific BP prevalence. KW - Young athletes KW - back pain KW - prevalence KW - types of sports Y1 - 2017 U6 - https://doi.org/10.1111/sms.12664 SN - 0905-7188 SN - 1600-0838 VL - 27 SP - 448 EP - 454 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Baur, Heiner A1 - Mayer, Frank T1 - Trunk extensor and flexor strength capacity in healthy young elite athletes aged 11-15 Years JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Mueller, J, Mueller, S, Stoll, J, Baur, H, and Mayer, F. Trunk extensor and flexor strength capacity in healthy young elite athletes aged 11-15 years. J Strength Cond Res 28(5): 1328-1334, 2014-Differences in trunk strength capacity because of gender and sports are well documented in adults. In contrast, data concerning young athletes are sparse. The purpose of this study was to assess the maximum trunk strength of adolescent athletes and to investigate differences between genders and age groups. A total of 520 young athletes were recruited. Finally, 377 (n = 233/144 M/F; 13 +/- 1 years; 1.62 +/- 0.11 m height; 51 +/- 12 kg mass; training: 4.5 +/- 2.6 years; training sessions/week: 4.3 +/- 3.0; various sports) young athletes were included in the final data analysis. Furthermore, 5 age groups were differentiated (age groups: 11, 12, 13, 14, and 15 years; n = 90, 150, 42, 43, and 52, respectively). Maximum strength of trunk flexors (Flex) and extensors (Ext) was assessed in all subjects during isokinetic concentric measurements (60 degrees center dot s(-1); 5 repetitions; range of motion: 55 degrees). Maximum strength was characterized by absolute peak torque (Flex(abs), Ext(abs); N center dot m), peak torque normalized to body weight (Flex(norm), Ext(norm); N center dot m center dot kg(-1) BW), and Flex(abs)/Ext(abs) ratio (RKquot). Descriptive data analysis (mean +/- SD) was completed, followed by analysis of variance (alpha = 0.05; post hoc test [Tukey-Kramer]). Mean maximum strength for all athletes was 97 +/- 34 N center dot m in Flex(abs) and 140 +/- 50 N center dot m in Ext(abs) (Flex(norm) = 1.9 +/- 0.3 N center dot m center dot kg(-1) BW, Ext(norm) = 2.8 +/- 0.6 N center dot m center dot kg(-1) BW). Males showed statistically significant higher absolute and normalized values compared with females (p < 0.001). Flex(abs) and Ext(abs) rose with increasing age almost 2-fold for males and females (Flex(abs), Ext(abs): p < 0.001). Flex(norm) and Ext(norm) increased with age for males (p < 0.001), however, not for females (Flex(norm): p = 0.26; Ext(norm): p = 0.20). RKquot (mean +/- SD: 0.71 +/- 0.16) did not reveal any differences regarding age (p = 0.87) or gender (p = 0.43). In adolescent athletes, maximum trunk strength must be discussed in a gender- and age-specific context. The Flex(abs)/Ext(abs) ratio revealed extensor dominance, which seems to be independent of age and gender. The values assessed may serve as a basis to evaluate and discuss trunk strength in athletes. KW - core KW - adolescents KW - isokinetic KW - strength performance Y1 - 2014 U6 - https://doi.org/10.1519/JSC.0000000000000280 SN - 1064-8011 SN - 1533-4287 VL - 28 IS - 5 SP - 1328 EP - 1334 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Müller, Juliane A1 - Hadzic, Miralem A1 - Mugele, Hendrik A1 - Stoll, Josefine A1 - Müller, Steffen A1 - Mayer, Frank T1 - Effect of high-intensity perturbations during core-specific sensorimotor exercises on trunk muscle activation JF - Journal of biomechanics N2 - Core-specific sensorimotor exercises are proven to enhance neuromuscular activity of the trunk. However, the influence of high-intensity perturbations on training efficiency is unclear within this context. Sixteen participants (29 +/- 2 yrs; 175 +/- 8 cm; 69 +/- 13 kg) were prepared with a 12-lead bilateral trunk EMG. Warm-up on a dynamometer was followed by maximum voluntary isometric trunk (flex/ext) contraction (MVC). Next, participants performed four conditions for a one-legged stance with hip abduction on a stable surface (HA) repeated randomly on an unstable surface (HAP), on a stable surface with perturbation (HA + P), and on an unstable surface with perturbation (HAP + P). Afterwards, bird dog (BD) was performed under the same conditions (BD, BDP, BD + P, BDP + P). A foam pad under the foot (HA) or the knee (BD) was used as an unstable surface. Exercises were conducted on a moveable platform. Perturbations (ACC 50 m/sec(2);100 ms duration;10rep.) were randomly applied in the anterior-posterior direction. The root mean square (RMS) normalized to MVC (%) was calculated (whole movement cycle). Muscles were grouped into ventral right and left (VR;VL), and dorsal right and left (DR;DL). Ventral Dorsal and right-left ratios were calculated (two way repeated-measures ANOVA;alpha = 0,05). Amplitudes of all muscle groups in bird dog were higher compared to hip abduction (p <= 0.0001; Range: BD: 14 +/- 3% (BD;VR) to 53 +/- 4%; HA: 7 +/- 2% (HA;DR) to 16 +/- 4% (HA;DR)). EMG-RMS showed significant differences (p < 0.001) between conditions and muscle groups per exercise. Interaction effects were only significant for HA (p = 0.02). No significant differences were present in EMG ratios (p > 0.05). Additional high-intensity perturbations during core-specific sensorimotor exercises lead to increased neuromuscular activity and therefore higher exercise intensities. However, the beneficial effects on trunk function remain unclear. Nevertheless, BD is more suitable to address trunk muscles. KW - Split-belt treadmill KW - EMG KW - Core stability KW - MiSpEx Y1 - 2017 U6 - https://doi.org/10.1016/j.jbiomech.2017.12.013 SN - 0021-9290 SN - 1873-2380 VL - 70 SP - 212 EP - 218 PB - Elsevier CY - Oxford ER -