TY - JOUR A1 - Niedl, Robert Raimund A1 - Beta, Carsten T1 - Hydrogel-driven paper-based microfluidics JF - LAB on a chip : miniaturisation for chemistry and biology N2 - Paper-based microfluidics provide an inexpensive, easy to use technology for point-of-care diagnostics in developing countries. Here, we combine paper-based microfluidic devices with responsive hydrogels to add an entire new class of functions to these versatile low-cost fluidic systems. The hydrogels serve as fluid reservoirs. In response to an external stimulus, e.g. an increase in temperature, the hydrogels collapse and release fluid into the structured paper substrate. In this way, chemicals that are either stored on the paper substrate or inside the hydrogel pads can be dissolved, premixed, and brought to reaction to fulfill specific analytic tasks. We demonstrate that multi-step sequences of chemical reactions can be implemented in a paper-based system and operated without the need for external precision pumps. We exemplify this technology by integrating an antibody-based E. coli test on a small and easy to use paper device. Y1 - 2015 U6 - https://doi.org/10.1039/c5lc00276a SN - 1473-0197 SN - 1473-0189 VL - 15 IS - 11 SP - 2452 EP - 2459 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Niedl, Robert Raimund A1 - Beta, Carsten T1 - Hydrogel-driven paper-based microfluidics N2 - Paper-based microfluidics provide an inexpensive, easy to use technology for point-of-care diagnostics in developing countries. Here, we combine paper-based microfluidic devices with responsive hydrogels to add an entire new class of functions to these versatile low-cost fluidic systems. The hydrogels serve as fluid reservoirs. In response to an external stimulus, e.g. an increase in temperature, the hydrogels collapse and release fluid into the structured paper substrate. In this way, chemicals that are either stored on the paper substrate or inside the hydrogel pads can be dissolved, premixed, and brought to reaction to fulfill specific analytic tasks. We demonstrate that multi-step sequences of chemical reactions can be implemented in a paper-based system and operated without the need for external precision pumps. We exemplify this technology by integrating an antibody-based E. coli test on a small and easy to use paper device. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 193 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-81083 SP - 2452 EP - 2459 ER - TY - JOUR A1 - Niedl, Robert Raimund A1 - Beta, Carsten T1 - Hydrogel-driven paper-based microfluidics JF - LAB on a chip : miniaturisation for chemistry and biology N2 - Paper-based microfluidics provide an inexpensive, easy to use technology for point-of-care diagnostics in developing countries. Here, we combine paper-based microfluidic devices with responsive hydrogels to add an entire new class of functions to these versatile low-cost fluidic systems. The hydrogels serve as fluid reservoirs. In response to an external stimulus, e.g. an increase in temperature, the hydrogels collapse and release fluid into the structured paper substrate. In this way, chemicals that are either stored on the paper substrate or inside the hydrogel pads can be dissolved, premixed, and brought to reaction to fulfill specific analytic tasks. We demonstrate that multi-step sequences of chemical reactions can be implemented in a paper-based system and operated without the need for external precision pumps. We exemplify this technology by integrating an antibody-based E. coli test on a small and easy to use paper device. Y1 - 2015 U6 - https://doi.org/10.1039/c5lc00276a SN - 1473-0197 SN - 1473-0189 VL - 11 IS - 15 SP - 2452 EP - 2459 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Niedl, Robert Raimund A1 - Berenstein, Igal A1 - Beta, Carsten T1 - How imperfect mixing and differential diffusion accelerate the rate of nonlinear reactions in microfluidic channels N2 - In this paper, we show experimentally that inside a microfluidic device, where the reactants are segregated, the reaction rate of an autocatalytic clock reaction is accelerated in comparison to the case where all the reactants are well mixed. We also find that, when mixing is enhanced inside the microfluidic device by introducing obstacles into the flow, the clock reaction becomes slower in comparison to the device where mixing is less efficient. Based on numerical simulations, we show that this effect can be explained by the interplay of nonlinear reaction kinetics (cubic autocatalysis) and differential diffusion, where the autocatalytic species diffuses slower than the substrate. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 253 KW - arsenious acid KW - fronts KW - paper KW - poly(dimethylsiloxane) KW - scale KW - systems Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95810 SP - 6451 EP - 6457 ER - TY - JOUR A1 - Niedl, Robert Raimund A1 - Berenstein, Igal A1 - Beta, Carsten T1 - How imperfect mixing and differential diffusion accelerate the rate of nonlinear reactions in microfluidic channels JF - Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies N2 - In this paper, we show experimentally that inside a microfluidic device, where the reactants are segregated, the reaction rate of an autocatalytic clock reaction is accelerated in comparison to the case where all the reactants are well mixed. We also find that, when mixing is enhanced inside the microfluidic device by introducing obstacles into the flow, the clock reaction becomes slower in comparison to the device where mixing is less efficient. Based on numerical simulations, we show that this effect can be explained by the interplay of nonlinear reaction kinetics (cubic autocatalysis) and differential diffusion, where the autocatalytic species diffuses slower than the substrate. KW - arsenious acid KW - systems KW - poly(dimethylsiloxane) KW - fronts KW - scale KW - paper Y1 - 2016 U6 - https://doi.org/10.1039/c6cp00224b SN - 1463-9076 SN - 1463-9084 VL - 18 SP - 6451 EP - 6457 PB - Royal Society of Chemistry CY - Cambridge ER - TY - THES A1 - Niedl, Robert Raimund T1 - Nichtlineare Kinetik und responsive Hydrogele für papierbasierte Schnelltestanwendungen T1 - Nonlinear kinetics and responsive hydrogels for paperbased point-of-care diagnostics N2 - Viele klinische Schnelltestsysteme benötigen vorpräparierte oder aufgereinigte Analyte mit frisch hergestellten Lösungen. Fernab standardisierter Laborbedingungen wie z.B. in Entwicklungsländern oder Krisengebieten sind solche Voraussetzungen oft nur unter einem hohen Aufwand herstellbar. Zusätzlich stellt die erforderliche Sensitivität die Entwicklung einfach zu handhabender Testsysteme vor große Herausforderungen. Autokatalytische Reaktionen, die sich mit Hilfe sehr geringer Initiatorkonzentrationen auslösen lassen, können hier eine Perspektive für Signalverstärkungsprozesse bieten. Aus diesem Grund wird im ersten Teil der vorliegenden Arbeit das Verhalten der autokatalytischen Arsenit-Jodat-Reaktion in einem mikrofluidischen Kanal untersucht. Dabei werden insbesondere die diffusiven und konvektiven Einflüsse auf die Reaktionskinetik im Vergleich zu makroskopischen Volumenmengen betrachtet. Im zweiten Teil werden thermoresponsive Hydrogele mit einem kanalstrukturierten Papiernetzwerk zu einem neuartigen, kapillargetriebenen, extern steuerbaren Mikrofluidik-System kombiniert. Das hier vorgestellte Konzept durch Hydrogele ein papierbasiertes LOC-System zu steuern, ermöglicht zukünftig die Herstellung von komplexeren, steuerbaren Point-Of-Care Testsystemen (POCT). Durch z.B. einen thermischen Stimulus, wird das Lösungsverhalten eines Hydrogels so verändert, dass die gespeicherte Flüssigkeit freigesetzt und durch die Kapillarkraft des Papierkanals ins System transportiert wird. Die Eigenschaften dieses Gelnetzwerks können dabei so eingestellt werden, dass eine Freisetzung von Flüssigkeiten sogar bei Körpertemperatur möglich wäre und damit eine Anwendung gänzlich ohne weitere Hilfsmittel denkbar ist. Für die Anwendung notwendige Chemikalien oder Enzyme lassen sich hierbei bequem in getrocknetem Zustand im Papiersubstrat vorlagern und bei Bedarf in Lösung bringen. Im abschließenden dritten Teil der Arbeit wird ein durch Hydrogele betriebener, Antikörper-basierter Mikroorganismenschnelltest für Escherichia coli präsentiert. Darüber hinaus wird weiterführend eine einfache Methode zur Funktionalisierung eines Hydrogels mit Biomolekülen über EDC/NHS-Kopplung vorgestellt. N2 - Many test systems for clinical applications require well-prepared or purified analytes. Far away from a laboratory environment, for example in developing countries or crisis regions, such prerequisites are often difficult to establish. Furthermore, the required sensitivity poses a considerable challenge for the development of easy-to-use test systems. . Autocatalytic reactions, which are which are highly sensitive to small initiator concentrations, may offer promising solutions to this problem. For this reason, in the first part of this thesis, the behavior of the autocatalytic arsenit-iodate-clock reaction is studied in a microfluidic environment. Especially the influence of diffusive and convective effects on the kinetics of the reaction were examined and compared to reaction conditions in macroscopic volumes. In the second part thermoresponsive hydrogels and a microstructured papersubstrate are combined to a externally controllable, new microfluidic system driven by capillary force. This offers new opportunities to integrate more complex analytic procedures in small point-of-care devices. For example, initiated by a thermal stimulus, the solubility of the hydrogel network is changed, so that the stored liquid is released and transported into the paper device, driven by capillary forces. The properties of thermoresponsive hydrogels can be tuned in such a way that the liquid release is triggered already by body temperature, so that no pumps or tubings are required anymore for usage. Furthermore chemicals and enzymes can be stored in the paper channels under dried conditions for a long time. Upon operation of the device, they can be taken up by the liquid released from the hydrogel reservoirs when needed. Finally, in the third part of this work, a rapid, easy-to-use hydrogel-driven test system for Escherichia coli is presented, based on an antibody assay. Futhermore a simple method for biofunctionalization of a hydrogel of a hydrogel based on EDC/NHS coupling will be introduced. KW - Hydrogel KW - papierbasiert KW - Mikrofluidik KW - HPµF KW - POCT KW - Pathogenerkennung KW - thermoresponsive KW - hydrogel KW - paperbased KW - POCT KW - nonlinear KW - chemical clock KW - biomolecule KW - functionalization Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-77735 ER - TY - JOUR A1 - Heinsohn, Natascha Katharina A1 - Niedl, Robert Raimund A1 - Anielski, Alexander A1 - Lisdat, Fred A1 - Beta, Carsten T1 - Electrophoretic mu PAD for purification and analysis of DNA samples JF - Biosensors : open access journal N2 - In this work, the fabrication and characterization of a simple, inexpensive, and effective microfluidic paper analytic device (mu PAD) for monitoring DNA samples is reported. The glass microfiber-based chip has been fabricated by a new wax-based transfer-printing technique and an electrode printing process. It is capable of moving DNA effectively in a time-dependent fashion. The nucleic acid sample is not damaged by this process and is accumulated in front of the anode, but not directly on the electrode. Thus, further DNA processing is feasible. The system allows the DNA to be purified by separating it from other components in sample mixtures such as proteins. Furthermore, it is demonstrated that DNA can be moved through several layers of the glass fiber material. This proof of concept will provide the basis for the development of rapid test systems, e.g., for the detection of pathogens in water samples. KW - microfluidic paper analytic device (mu PAD) KW - patterning glass microfiber KW - fiber-electrophoresis chip KW - DNA KW - imprinted electrodes KW - cross layer chip KW - polymerase chain reaction (PCR) KW - purification Y1 - 2022 U6 - https://doi.org/10.3390/bios12020062 SN - 2079-6374 VL - 12 IS - 2 PB - MDPI CY - Basel ER -