TY - JOUR A1 - Rohn, Isabelle A1 - Marschall, Talke Anu A1 - Kröpfl, Nina A1 - Jensen, Kenneth Bendix A1 - Aschner, Michael A1 - Tuck, Simon A1 - Kuehnelt, Doris A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Selenium species-dependent toxicity, bioavailability and metabolic transformations in Caenorhabditis elegans JF - Metallomics : integrated biometal science N2 - The essential micronutrient selenium (Se) is required for various systemic functions, but its beneficial range is narrow and overexposure may result in adverse health effects. Additionally, the chemical form of the ingested selenium contributes crucially to its health effects. While small Se species play a major role in Se metabolism, their toxicological effects, bioavailability and metabolic transformations following elevated uptake are poorly understood. Utilizing the tractable invertebrate Caenorhabditis elegans allowed for an alternative approach to study species-specific characteristics of organic and inorganic Se forms in vivo, revealing remarkable species-dependent differences in the toxicity and bioavailability of selenite, selenomethionine (SeMet) and Se-methylselenocysteine (MeSeCys). An inverse relationship was found between toxicity and bioavailability of the Se species, with the organic species displaying a higher bioavailability than the inorganic form, yet being less toxic. Quantitative Se speciation analysis with HPLC/mass spectrometry revealed a partial metabolism of SeMet and MeSeCys. In SeMet exposed worms, identified metabolites were Se-adenosylselenomethionine (AdoSeMet) and Se-adenosylselenohomocysteine (AdoSeHcy), while worms exposed to MeSeCys produced Se-methylselenoglutathione (MeSeGSH) and -glutamyl-MeSeCys (-Glu-MeSeCys). Moreover, the possible role of the sole selenoprotein in the nematode, thioredoxin reductase-1 (TrxR-1), was studied comparing wildtype and trxr-1 deletion mutants. Although a lower basal Se level was detected in trxr-1 mutants, Se toxicity and bioavailability following acute exposure was indistinguishable from wildtype worms. Altogether, the current study demonstrates the suitability of C. elegans as a model for Se species dependent toxicity and metabolism, while further research is needed to elucidate TrxR-1 function in the nematode. Y1 - 2018 U6 - https://doi.org/10.1039/c8mt00066b SN - 1756-5901 SN - 1756-591X VL - 10 IS - 6 SP - 818 EP - 827 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Meyer, Sören A1 - Markova, Mariya A1 - Pohl, Gabriele A1 - Marschall, Talke Anu A1 - Pivovarova, Olga A1 - Pfeiffer, Andreas F. H. A1 - Schwerdtle, Tanja T1 - Development, validation and application of an ICP-MS/MS method to quantify minerals and (ultra-)trace elements in human serum JF - Journal of trace elements in medicine and biology N2 - Multi-element determination in human samples is very challenging. Especially in human intervention studies sample volumes are often limited to a few microliters and due to the high number of samples a high-throughput is indispensable. Here, we present a state-of-the-art ICP-MS/MS-based method for the analysis of essential (trace) elements, namely Mg, Ca, Fe, Cu, Zn, Mo, Se and I, as well as food-relevant toxic elements such as As and Cd. The developed method was validated regarding linearity of the calibration curves, method LODs and LOQs, selectivity and trueness as well as precision. The established reliable method was applied to quantify the element serum concentrations of participants of a human intervention study (LeguAN). The participants received isocaloric diets, either rich in plant protein or in animal protein. While the serum concentrations of Mg and Mo increased in participants receiving the plant protein-based diet (above all legumes), the Se concentration in serum decreased. In contrast, the animal protein-based diet, rich in meat and dairy products, resulted in an increased Se concentration in serum. KW - ICP-MS KW - Elemental blood serum concentration KW - Human nutritional intervention Y1 - 2018 U6 - https://doi.org/10.1016/j.jtemb.2018.05.012 SN - 0946-672X VL - 49 SP - 157 EP - 163 PB - Elsevier GMBH CY - München ER - TY - JOUR A1 - Marschall, Talke Anu A1 - Kroepfl, Nina A1 - Jensen, Kenneth Bendix A1 - Bornhorst, Julia A1 - Meermann, B. A1 - Kühnelt, Doris A1 - Schwerdtle, Tanja T1 - Tracing cytotoxic effects of small organic Se species in human liver cells back to total cellular Se and Se metabolites JF - Metallomics N2 - Small selenium (Se) species play a major role in the metabolism, excretion and dietary supply of the essential trace element selenium. Human cells provide a valuable tool for investigating currently unresolved issues on the cellular mechanisms of Se toxicity and metabolism. In this study, we developed two isotope dilution inductively coupled plasma tandem-mass spectrometry based methods and applied them to human hepatoma cells (HepG2) in order to quantitatively elucidate total cellular Se concentrations and cellular Se species transformations in relation to the cytotoxic effects of four small organic Se species. Species-and incubation time-dependent results were obtained: the two major urinary excretion metabolites trimethylselenonium (TMSe) and methyl-2-acetamido-2-deoxy-1-seleno-beta- D-galactopyranoside (SeSugar 1) were taken up by the HepG2 cells in an unmodified manner and did not considerably contribute to the Se pool. In contrast, Se-methylselenocysteine (MeSeCys) and selenomethionine (SeMet) were taken up in higher amounts, they were largely incorporated by the cells (most likely into proteins) and metabolized to other small Se species. Two new metabolites of MeSeCys, namely gamma-glutamyl-Se-methylselenocysteine and Se-methylselenoglutathione, were identified by means of HPLC-electrospray-ionization-Orbitrap-MS. They are certainly involved in the (de-) toxification modes of Se metabolism and require further investigation. Y1 - 2017 U6 - https://doi.org/10.1039/c6mt00300a SN - 1756-5901 SN - 1756-591X VL - 9 SP - 268 EP - 277 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Marschall, Talke Anu A1 - Bornhorst, Julia A1 - Kuehnelt, Doris A1 - Schwerdtle, Tanja T1 - Differing cytotoxicity and bioavailability of selenite, methylselenocysteine, selenomethionine, selenosugar 1 and trimethylselenonium ion and their underlying metabolic transformations in human cells JF - Applied computing review : the publication of the ACM Special Interest Group on Applied Computing N2 - Scope: The trace element selenium (Se) is an integral component of our diet. However, its metabolism and toxicity following elevated uptake are not fully understood. Since the either adverse or beneficial health effects strongly depend on the ingested Se species, five low molecular weight species were investigated regarding their toxicological effects, cellular bioavailability and species-specific metabolism in human cells. Methods and results: For the first time, the urinary metabolites methyl-2-acetamido-2-deoxy1- seleno-beta-D-galactopyranoside (selenosugar 1) and trimethylselenonium ion (TMSe) were toxicologically characterised in comparison to the food relevant species methylselenocysteine (MeSeCys), selenomethionine (SeMet) and selenite in human urothelial, astrocytoma and hepatoma cells. In all cell lines selenosugar 1 and TMSe showed no cytotoxicity. Selenite, MeSeCys and SeMet exerted substantial cytotoxicity, which was strongest in the urothelial cells. There was no correlation between the potencies of the respective toxic effects and the measured cellular Se concentrations. Se speciation indicated that metabolism of the respective species is likely to affect cellular toxicity. Conclusion: Despite being taken up, selenosugar 1 and TMSe are non-cytotoxic to urothelial cells, most likely because they are not metabolically activated. The absent cytotoxicity of selenosugar 1 and TMSe up to supra-physiological concentrations, support their importance as metabolites for Se detoxification. KW - Cellular bioavailability KW - ICP-QQQ-MS KW - Selenosugar 1 KW - Small selenium species KW - Speciation Y1 - 2016 U6 - https://doi.org/10.1002/mnfr.201600422 SN - 1613-4125 SN - 1613-4133 VL - 60 SP - 2622 EP - 2632 PB - Wiley-Blackwell CY - Hoboken ER - TY - THES A1 - Marschall, Talke Anu T1 - Zytotoxizität, Bioverfügbarkeit und Metabolismus kleiner Selenspezies in humanen Zellen und Entwicklung von ICP-QQQ-MS-basierten Methoden für deren Nachweis Y1 - 2017 ER -