TY - JOUR A1 - Zhou, Yuefang A1 - Kornher, Tristan A1 - Mohnke, Janett A1 - Fischer, Martin H. T1 - Tactile interaction with a humanoid robot BT - effects on physiology and subjective impressions JF - International journal of social robotics N2 - This study investigated how touching and being touched by a humanoid robot affects human physiology, impressions of the interaction, and attitudes towards humanoid robots. 21 healthy adult participants completed a 3 (touch style: touching, being touched, pointing) x 2 (body part: hand vs buttock) within-subject design using a Pepper robot. Skin conductance response (SCR) was measured during each interaction. Perceived impressions of the interaction (i.e., friendliness, comfort, arousal) were measured per questionnaire after each interaction. Participants' demographics and their attitude towards robots were also considered. We found shorter SCR rise times in the being touched compared to the touching condition, possibly reflecting psychological alertness to the unpredictability of robot-initiated contacts. The hand condition had shorter rise times than the buttock condition. Most participants evaluated the hand condition as most friendly and comfortable and the robot-initiated interactions as most arousing. Interacting with Pepper improved attitudes towards robots. Our findings require future studies with larger samples and improved procedures. They have implications for robot design in all domains involving tactile interactions, such as caring and intimacy. KW - Human– robot tactile interaction KW - Skin conductance KW - Buttocks KW - Robot Pepper KW - Human– robot intimate relationships Y1 - 2021 U6 - https://doi.org/10.1007/s12369-021-00749-x SN - 1875-4791 SN - 1875-4805 VL - 13 IS - 7 SP - 1657 EP - 1677 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Zhou, Yuefang A1 - Fischer, Martin H. T1 - Mimicking non-verbal emotional expressions and empathy development in simulated consultations BT - an experimental feasibility study JF - Patient education and counseling N2 - Objective: To explore the feasibility of applying an experimental design to study the relationship between non-verbal emotions and empathy development in simulated consultations. Method: In video-recorded simulated consultations, twenty clinicians were randomly allocated to either an experimental group (instructed to mimic non-verbal emotions of a simulated patient, SP) or a control group (no such instruction). Baseline empathy scores were obtained before consultation, relational empathy was rated by SP after consultation. Multilevel logistic regression modelled the probability of mimicry occurrence, controlling for baseline empathy and clinical experience. ANCOVA compared group differences on relational empathy and consultation smoothness. Results: Instructed mimicry lasted longer than spontaneous mimicry. Mimicry was marginally related to improved relational empathy. SP felt being treated more like a whole person during consultations with spontaneous mimicry. Clinicians who displayed spontaneous mimicry felt consultations went more smoothly. Conclusion: The experimental approach improved our understanding of how non-verbal emotional mimicry contributed to relational empathy development during consultations. Further work should ascertain the potential of instructed mimicry to enhance empathy development. Practice implications: Understanding how non-verbal emotional mimicry impacts on patients’ perceived clinician empathy during consultations may inform training and intervention programme development. KW - Mimicry KW - Non-verbal emotion KW - Empathy KW - Experimental design Y1 - 2017 U6 - https://doi.org/10.1016/j.pec.2017.08.016 SN - 0738-3991 VL - 101 IS - 2 SP - 304 EP - 309 PB - Elsevier Science CY - Clare ER - TY - JOUR A1 - Wood, Danielle A1 - Shaki, Samuel A1 - Fischer, Martin H. T1 - Turn the beat around: Commentary on "Slow and fast beat sequences are represented differently through space" (De Tommaso & Prpic, 2020, in Attention, Perception, & Psychophysics) JF - Attention, perception, & psychophysics : AP&P ; a journal of the Psychonomic Society, Inc. N2 - There has been increasing interest in the spatial mapping of various perceptual and cognitive magnitudes, such as expanding the spatial-numerical association of response codes (SNARC) effect into domains outside of numerical cognition. Recently, De Tommaso and Prpic (Attention, Perception, & Psychophysics, 82, 2765-2773, 2020) reported in this journal that only fast tempos over 104 beats per minute have spatial associations, with more right-sided associations and faster responses for faster tempos. After discussing the role of perceived loudness and possible response strategies, we propose and recommend methodological improvements for further research. KW - Distance effect KW - Music cognition KW - Pitch KW - magnitude association KW - Semantic KW - congruity effect KW - SMARC KW - Sound recognition KW - Spatial cognition Y1 - 2021 U6 - https://doi.org/10.3758/s13414-021-02247-8 SN - 1943-3921 SN - 1943-393X VL - 83 IS - 4 SP - 1518 EP - 1521 PB - Springer CY - New York ER - TY - JOUR A1 - Winter, Bodo A1 - Matlock, Teenie A1 - Shaki, Samuel A1 - Fischer, Martin H. T1 - Mental number space in three dimensions JF - Neuroscience & biobehavioral reviews : official journal of the International Behavioral Neuroscience Society N2 - A large number of experimental findings from neuroscience and experimental psychology demonstrated interactions between spatial cognition and numerical cognition. In particular, many researchers posited a horizontal mental number line, where small numbers are thought of as being to the left of larger numbers. This review synthesizes work on the mental association between space and number, indicating the existence of multiple spatial mappings: recent research has found associations between number and vertical space, as well as associations between number and near/far space. We discuss number space in three dimensions with an eye on potential origins of the different number mappings, and how these number mappings fit in with our current knowledge of brain organization and brain-culture interactions. We derive novel predictions and show how this research fits into a general view of cognition as embodied, grounded and situated. (C) 2015 Elsevier Ltd. All rights reserved. KW - Embodiment KW - Intra-parietal sulcus KW - Mental number line KW - Metaphor KW - Neglect KW - Spatial cognition KW - SNARC Y1 - 2015 U6 - https://doi.org/10.1016/j.neubiorev.2015.09.005 SN - 0149-7634 SN - 1873-7528 VL - 57 SP - 209 EP - 219 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Wiemers, Michael A1 - Fischer, Martin H. T1 - Effects of hand proximity and movement direction in spatial and temporal gap discrimination T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Previous research on the interplay between static manual postures and visual attention revealed enhanced visual selection near the hands (near-hand effect). During active movements there is also superior visual performance when moving toward compared to away from the stimulus (direction effect). The "modulated visual pathways" hypothesis argues that differential involvement of magno- and parvocellular visual processing streams causes the near-hand effect. The key finding supporting this hypothesis is an increase in temporal and a reduction in spatial processing in near-hand space (Gozli et al., 2012). Since this hypothesis has, so far, only been tested with static hand postures, we provide a conceptual replication of Gozli et al.'s (2012) result with moving hands, thus also probing the generality of the direction effect. Participants performed temporal or spatial gap discriminations while their right hand was moving below the display. In contrast to Gozli et al (2012), temporal gap discrimination was superior at intermediate and not near hand proximity. In spatial gap discrimination, a direction effect without hand proximity effect suggests that pragmatic attentional maps overshadowed temporal/spatial processing biases for far/near-hand space. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 428 KW - attention KW - perception and action KW - two visual systems KW - visual perception KW - movement preparation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406568 IS - 428 ER - TY - JOUR A1 - Wiemers, Michael A1 - Fischer, Martin H. T1 - Effects of Hand Proximity and Movement Direction in Spatial and Temporal Gap Discrimination JF - Frontiers in psychology KW - attention KW - perception and action KW - two visual systems KW - visual perception KW - movement preparation Y1 - 2016 U6 - https://doi.org/10.3389/fpsyg.2016.01930 SN - 1664-1078 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Werner, Karsten A1 - Raab, Markus A1 - Fischer, Martin H. T1 - Moving arms BT - the effects of sensorimotor information on the problem-solving process JF - Thinking & Reasoning N2 - Embodied cognition postulates a bi-directional link between the human body and its cognitive functions. Whether this holds for higher cognitive functions such as problem solving is unknown. We predicted that arm movement manipulations performed by the participants could affect the problem-solving solutions. We tested this prediction in quantitative reasoning tasks that allowed two solutions to each problem (addition or subtraction). In two studies with healthy adults (N=53 and N=50), we found an effect of problem-congruent movements on problem solutions. Consistent with embodied cognition, sensorimotor information gained via right or left arm movements affects the solution in different types of problem-solving tasks. KW - Embodied cognition KW - eye movements KW - problem solving Y1 - 2018 U6 - https://doi.org/10.1080/13546783.2018.1494630 SN - 1354-6783 SN - 1464-0708 VL - 25 IS - 2 SP - 171 EP - 191 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - GEN A1 - Werner, Karsten A1 - Raab, Markus A1 - Fischer, Martin H. T1 - Moving arms BT - the effects of sensorimotor information on the problem-solving process T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Embodied cognition postulates a bi-directional link between the human body and its cognitive functions. Whether this holds for higher cognitive functions such as problem solving is unknown. We predicted that arm movement manipulations performed by the participants could affect the problem-solving solutions. We tested this prediction in quantitative reasoning tasks that allowed two solutions to each problem (addition or subtraction). In two studies with healthy adults (N=53 and N=50), we found an effect of problem-congruent movements on problem solutions. Consistent with embodied cognition, sensorimotor information gained via right or left arm movements affects the solution in different types of problem-solving tasks. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 488 KW - embodied cognition KW - eye movements KW - problem solving Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-420579 UR - urn:nbn:de:kobv:517-opus4-420579 SN - 1866-8364 IS - 488 ER - TY - JOUR A1 - Wasner, Mirjam A1 - Möller, Korbinian A1 - Fischer, Martin H. A1 - Nuerk, Hans-Christoph T1 - Related but not the same: Ordinality, cardinality and 1-to-1 correspondence in finger-based numerical representations JF - Journal of cognitive psychology N2 - Finger-based numerical representations have gained increasing research interest. However, their description and assessment often refer to different numerical principles of ordinality, cardinality and 1-to-1 correspondence. Our aim was to investigate similarities and differences between these principles in finger-based numerical representations. Sixty-eight healthy adults performed ordinal finger counting, cardinal finger montring (showing the number of gestures) and finger-to-number mapping with twisted arms and fingers. We found that counting gestures and montring postures were identical for Number 10 but differed to varying degrees for other numbers. Interestingly, there was no systematic relation between finger-to-number mapping and ordinal finger counting habits. These data question the assumption of a unitary embodied finger-based numerical representation, but suggest that different finger-based representations co-exist and can be recruited flexibly depending on the numerical aspects to be conveyed. KW - Finger-based numerical representations KW - Finger counting KW - 1-to-1 Correspondence KW - Cardinality KW - Ordinality Y1 - 2015 U6 - https://doi.org/10.1080/20445911.2014.964719 SN - 2044-5911 SN - 2044-592X VL - 27 IS - 4 SP - 426 EP - 441 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Wasner, Mirjam A1 - Moeller, Korbinian A1 - Fischer, Martin H. A1 - Nuerk, Hans-Christoph T1 - Aspects of situated cognition in embodied numerosity: the case of finger counting JF - Cognitive processing : international quarterly of cognitive science N2 - Numerical cognitions such as spatial-numerical associations have been observed to be influenced by grounded, embodied and situated factors. For the case of finger counting, grounded and embodied influences have been reported. However, situated influences, e.g., that reported counting habits change with perception and action within a given situation, have not been systematically examined. To pursue the issue of situatedness of reported finger-counting habits, 458 participants were tested in three separate groups: (1) spontaneous condition: counting with both hands available, (2) perceptual condition: counting with horizontal (left-to-right) perceptual arrangement of fingers (3) perceptual and proprioceptive condition: counting with horizontal (left-to-right) perceptual arrangement of fingers and with busy dominant hand. Report of typical counting habits differed strongly between the three conditions. 28 % reported to start counting with the left hand in the spontaneous counting condition (1), 54 % in the perceptual condition (2) and 62 % in the perceptual and proprioceptive condition (3). Additionally, all participants in the spontaneous counting group showed a symmetry-based counting pattern (with the thumb as number 6), while in the two other groups, a considerable number of participants exhibited a spatially continuous counting pattern (with the pinkie as number 6). Taken together, the study shows that reported finger-counting habits depend on the perceptual and proprioceptive situation and thus are strongly influenced by situated cognition. We suggest that this account reconciles apparently contradictory previous findings of different counting preferences regarding the starting hand in different examination situations. KW - Finger counting KW - Situated cognition KW - Number processing KW - Finger-digit mapping Y1 - 2014 U6 - https://doi.org/10.1007/s10339-014-0599-z SN - 1612-4782 SN - 1612-4790 VL - 15 IS - 3 SP - 317 EP - 328 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Tschentscher, Nadja A1 - Hauk, Olaf A1 - Fischer, Martin H. A1 - Pulvermüller, Friedemann T1 - You can count on the motor cortex finger counting habits modulate motor cortex activation evoked by numbers JF - NeuroImage : a journal of brain function N2 - The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. KW - Embodied cognition KW - Numerical cognaion KW - Finger counting habits KW - SNARC effect Y1 - 2012 U6 - https://doi.org/10.1016/j.neuroimage.2011.11.037 SN - 1053-8119 VL - 59 IS - 4 SP - 3139 EP - 3148 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Sixtus, Elena A1 - Lonnemann, Jan A1 - Fischer, Martin H. A1 - Werner, Karsten T1 - Mental Number Representations in 2D Space JF - Frontiers in Psychology N2 - There is evidence both for mental number representations along a horizontal mental number line with larger numbers to the right of smaller numbers (for Western cultures) and a physically grounded, vertical representation where “more is up.” Few studies have compared effects in the horizontal and vertical dimension and none so far have combined both dimensions within a single paradigm where numerical magnitude was task-irrelevant and none of the dimensions was primed by a response dimension. We now investigated number representations over both dimensions, building on findings that mental representations of numbers and space co-activate each other. In a Go/No-go experiment, participants were auditorily primed with a relatively small or large number and then visually presented with quasi-randomly distributed distractor symbols and one Arabic target number (in Go trials only). Participants pressed a central button whenever they detected the target number and elsewise refrained from responding. Responses were not more efficient when small numbers were presented to the left and large numbers to the right. However, results indicated that large numbers were associated with upper space more strongly than small numbers. This suggests that in two-dimensional space when no response dimension is given, numbers are conceptually associated with vertical, but not horizontal space. KW - spatial-numerical associations KW - SNARC KW - vertical space KW - horizontal space KW - Go/No-go task Y1 - 2019 U6 - https://doi.org/10.3389/fpsyg.2019.00172 SN - 1664-1078 VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Sixtus, Elena A1 - Lonnemann, Jan A1 - Fischer, Martin H. A1 - Werner, Karsten T1 - Mental Number Representations in 2D Space T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - There is evidence both for mental number representations along a horizontal mental number line with larger numbers to the right of smaller numbers (for Western cultures) and a physically grounded, vertical representation where “more is up.” Few studies have compared effects in the horizontal and vertical dimension and none so far have combined both dimensions within a single paradigm where numerical magnitude was task-irrelevant and none of the dimensions was primed by a response dimension. We now investigated number representations over both dimensions, building on findings that mental representations of numbers and space co-activate each other. In a Go/No-go experiment, participants were auditorily primed with a relatively small or large number and then visually presented with quasi-randomly distributed distractor symbols and one Arabic target number (in Go trials only). Participants pressed a central button whenever they detected the target number and elsewise refrained from responding. Responses were not more efficient when small numbers were presented to the left and large numbers to the right. However, results indicated that large numbers were associated with upper space more strongly than small numbers. This suggests that in two-dimensional space when no response dimension is given, numbers are conceptually associated with vertical, but not horizontal space. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 538 KW - spatial-numerical associations KW - SNARC KW - vertical space KW - horizontal space KW - Go/No-go task Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424960 SN - 1866-8364 IS - 538 ER - TY - JOUR A1 - Sixtus, Elena A1 - Lindemann, Oliver A1 - Fischer, Martin H. T1 - Stimulating numbers BT - signatures of finger counting in numerosity processing JF - Psychological research : an international journal of perception, attention, memory, and action N2 - Finger counting is one of the first steps in the development of mature number concepts. With a one-to-one correspondence of fingers to numbers in Western finger counting, fingers hold two numerical meanings: one is based on the number of fingers raised and the second is based on their ordinal position within the habitual finger counting sequence. This study investigated how these two numerical meanings of fingers are intertwined with numerical cognition in adults. Participants received tactile stimulation on their fingertips of one hand and named either the number of fingers stimulated (2, 3, or 4 fingers; Experiment 1) or the number of stimulations on one fingertip (2, 3, or 4 stimulations; Experiment 2). Responses were faster and more accurate when the set of stimulated fingers corresponded to finger counting habits (Experiment 1) and when the number of stimulations matched the ordinal position of the stimulated finger (Experiment 2). These results show that tactile numerosity perception is affected by individual finger counting habits and that those habits give numerical meaning to single fingers. Y1 - 2018 U6 - https://doi.org/10.1007/s00426-018-0982-y SN - 0340-0727 SN - 1430-2772 VL - 84 IS - 1 SP - 152 EP - 167 PB - Springer CY - Heidelberg ER - TY - CHAP A1 - Sixtus, Elena A1 - Lindemann, Oliver A1 - Fischer, Martin H. T1 - The flexibility of finger-based magnitude representations T2 - Cognitive processing : international quarterly of cognitive science Y1 - 2014 SN - 1612-4782 SN - 1612-4790 VL - 15 IS - 1 SP - S68 EP - S69 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Sixtus, Elena A1 - Fischer, Martin H. A1 - Lindemann, Oliver T1 - Finger posing primes number comprehension JF - Cognitive processing : international quarterly of cognitive science N2 - Canonical finger postures, as used in counting, activate number knowledge, but the exact mechanism for this priming effect is unclear. Here we dissociated effects of visual versus motor priming of number concepts. In Experiment 1, participants were exposed either to pictures of canonical finger postures (visual priming) or actively produced the same finger postures (motor priming) and then used foot responses to rapidly classify auditory numbers (targets) as smaller or larger than 5. Classification times revealed that manually adopted but not visually perceived postures primed magnitude classifications. Experiment 2 obtained motor priming of number processing through finger postures also with vocal responses. Priming only occurred through canonical and not through non-canonical finger postures. Together, these results provide clear evidence for motor priming of number knowledge. Relative contributions of vision and action for embodied numerical cognition and the importance of canonicity of postures are discussed. KW - Embodied cognition KW - Finger counting KW - Numerical cognition KW - Priming Y1 - 2017 U6 - https://doi.org/10.1007/s10339-017-0804-y SN - 1612-4782 SN - 1612-4790 VL - 18 SP - 237 EP - 248 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Sixtus, Elena A1 - Fischer, Martin H. T1 - Eine kognitionswissenschaftliche Betrachtung der Konzepte "Raum" und "Zahl" JF - Raum und Zahl im Fokus der Wissenschaften : eine multidisziplinäre Vorlesungsreihe Y1 - 2015 SN - 978-3-86464-082-7 SP - 35 EP - 62 PB - Trafo CY - Berlin ER - TY - JOUR A1 - Shaki, Samuel A1 - Sery, Noa A1 - Fischer, Martin H. T1 - 1 + 2 is more than 2 + 1: Violations of commutativity and identity axioms in mental arithmetic JF - Journal of cognitive psychology N2 - Over the past decade or so, a large number of studies have revealed that conceptual meaning is sensitive to situational context. More recently, similar contextual influences have been documented in the domain of number knowledge. Here we show such context dependency in a length production task. Adult participants saw single digit addition problems of the form n1 + n2 and produced the sum by changing bi-directionally the length of a horizontally extended line, using radially arranged buttons. We found that longer lines were produced when n1 < n2 compared to n1 > n2 and that unit size increased with result size. Thus, the mathematical axioms of commutativity and identity do not seem to hold in mental addition. We discuss implications of these observations for our understanding of cognitive mechanisms involved in mental arithmetic and for situated cognition generally. KW - Operand order effect KW - Situated cognition KW - Mental number line KW - SNARC KW - Operational momentum Y1 - 2015 U6 - https://doi.org/10.1080/20445911.2014.973414 SN - 2044-5911 SN - 2044-592X VL - 27 IS - 4 SP - 471 EP - 477 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Shaki, Samuel A1 - Pinhas, Michal A1 - Fischer, Martin H. T1 - Heuristics and biases in mental arithmetic BT - revisiting and reversing operational momentum JF - Thinking & Reasoning N2 - Mental arithmetic is characterised by a tendency to overestimate addition and to underestimate subtraction results: the operational momentum (OM) effect. Here, motivated by contentious explanations of this effect, we developed and tested an arithmetic heuristics and biases model that predicts reverse OM due to cognitive anchoring effects. Participants produced bi-directional lines with lengths corresponding to the results of arithmetic problems. In two experiments, we found regular OM with zero problems (e.g., 3+0, 3-0) but reverse OM with non-zero problems (e.g., 2+1, 4-1). In a third experiment, we tested the prediction of our model. Our results suggest the presence of at least three competing biases in mental arithmetic: a more-or-less heuristic, a sign-space association and an anchoring bias. We conclude that mental arithmetic exhibits shortcuts for decision-making similar to traditional domains of reasoning and problem-solving. KW - Heuristics KW - mental arithmetic KW - mental number line KW - operational momentum KW - problem-solving Y1 - 2017 U6 - https://doi.org/10.1080/13546783.2017.1348987 SN - 1354-6783 SN - 1464-0708 VL - 24 IS - 2 SP - 138 EP - 156 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Shaki, Samuel A1 - Fischer, Martin H. A1 - Goebel, Silke M. T1 - Direction counts A comparative study of spatially directional counting biases in cultures with different reading directions JF - Journal of experimental child psychology N2 - Western adults associate small numbers with left space and large numbers with right space. Where does this pervasive spatial-numerical association come from? In this study, we first recorded directional counting preferences in adults with different reading experiences (left to right, right to left, mixed, and illiterate) and observed a clear relationship between reading and counting directions. We then recorded directional counting preferences in pre-schoolers and elementary school children from three of these reading cultures (left to right, right to left, and mixed). Culture-specific counting biases existed before reading acquisition in children as young as 3 years and were subsequently modified by early reading experience. Together, our results suggest that both directional counting and scanning activities contribute to number-space associations. KW - Counting KW - Numerical cognition KW - Reading direction KW - Number-space association KW - Mental Number KW - Cross-cultural Y1 - 2012 U6 - https://doi.org/10.1016/j.jecp.2011.12.005 SN - 0022-0965 VL - 112 IS - 2 SP - 275 EP - 281 PB - Elsevier CY - San Diego ER -