TY - JOUR A1 - Müller, S. M. A1 - Finke, Hannah A1 - Ebert, Franziska A1 - Kopp, Johannes Florian A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Francesconi, Kevin A. A1 - Raber, G. A1 - Schwerdtle, Tanja T1 - Arsenic-containing hydrocarbons BT - effects on gene expression, epigenetics, and biotransformation in HepG2 cells JF - Archives of toxicology : official journal of EUROTOX N2 - Arsenic-containing hydrocarbons (AsHCs), a subgroup of arsenolipids found in fish and algae, elicit substantial toxic effects in various human cell lines and have a considerable impact on cellular energy levels. The underlying mode of action, however, is still unknown. The present study analyzes the effects of two AsHCs (AsHC 332 and AsHC 360) on the expression of 44 genes covering DNA repair, stress response, cell death, autophagy, and epigenetics via RT-qPCR in human liver (HepG2) cells. Both AsHCs affected the gene expression, but to different extents. After treatment with AsHC 360, flap structure-specific endonuclease 1 (FEN1) as well as xeroderma pigmentosum group A complementing protein (XPA) and (cytosine-5)-methyltransferase 3A (DNMT3A) showed time- and concentration-dependent alterations in gene expression, thereby indicating an impact on genomic stability. In the subsequent analysis of epigenetic markers, within 72 h, neither AsHC 332 nor AsHC 360 showed an impact on the global DNA methylation level, whereas incubation with AsHC 360 increased the global DNA hydroxymethylation level. Analysis of cell extracts and cell media by HPLC-mass spectrometry revealed that both AsHCs were considerably biotransformed. The identified metabolites include not only the respective thioxo-analogs of the two AsHCs, but also several arsenic-containing fatty acids and fatty alcohols, contributing to our knowledge of biotransformation mechanisms of arsenolipids. KW - Arsenolipids KW - Gene expression KW - Arsenic-containing hydrocarbons KW - Global DNA methylation KW - Arsenic speciation KW - Metabolism Y1 - 2018 U6 - https://doi.org/10.1007/s00204-018-2194-z SN - 0340-5761 SN - 1432-0738 VL - 92 IS - 5 SP - 1751 EP - 1765 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Finke, Hannah A1 - Winkelbeiner, Nicola Lisa A1 - Lossow, Kristina A1 - Hertel, Barbara A1 - Wandt, Viktoria Klara Veronika A1 - Schwarz, Maria A1 - Pohl, Gabriele A1 - Kopp, Johannes Florian A1 - Ebert, Franziska A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - Effects of a Cumulative, Suboptimal Supply of Multiple Trace Elements in Mice BT - trace element status, genomic stability, inflammation, and epigenetics JF - Molecular nutrition & food research N2 - Scope: Trace element (TE) deficiencies often occur accumulated, as nutritional intake is inadequate for several TEs, concurrently. Therefore, the impact of a suboptimal supply of iron, zinc, copper, iodine, and selenium on the TE status, health parameters, epigenetics, and genomic stability in mice are studied. Methods and results: Male mice receive reduced or adequate amounts of TEs for 9 weeks. The TE status is analyzed mass‐spectrometrically in serum and different tissues. Furthermore, gene and protein expression of TE biomarkers are assessed with focus on liver. Iron concentrations are most sensitive toward a reduced supply indicated by increased serum transferrin levels and altered hepatic expression of iron‐related genes. Reduced TE supply results in smaller weight gain but higher spleen and heart weights. Additionally, inflammatory mediators in serum and liver are increased together with hepatic genomic instability. However, global DNA (hydroxy)methylation is unaffected by the TE modulation. Conclusion: Despite homeostatic regulation of most TEs in response to a low intake, this condition still has substantial effects on health parameters. It appears that the liver and immune system react particularly sensitive toward changes in TE intake. The reduced Fe status might be the primary driver for the observed effects. Y1 - 2020 U6 - https://doi.org/10.1002/mnfr.202000325 SN - 1613-4125 VL - 64 IS - 16 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Finke, Hannah A1 - Wandt, Viktoria Klara Veronika A1 - Ebert, Franziska A1 - Guttenberger, Nikolaus A1 - Glabonjat, Ronald A. A1 - Stiboller, Michael A1 - Francesconi, Kevin A. A1 - Raber, Georg A1 - Schwerdtle, Tanja T1 - Toxicological assessment of arsenic-containing phosphatidylcholines in HepG2 cells N2 - Arsenolipids include a wide range of organic arsenic species that occur naturally in seafood and thereby contribute to human arsenic exposure. Recently arsenic-containing phosphatidylcholines (AsPCs) were identified in caviar, fish, and algae. In this first toxicological assessment of AsPCs, we investigated the stability of both the oxo- and thioxo-form of an AsPC under experimental conditions, and analyzed cell viability, indicators of genotoxicity and biotransformation in human liver cancer cells (HepG2). Precise toxicity data could not be obtained owing to the low solubility in the cell culture medium of the thioxo-form, and the ease of hydrolysis of the oxo-form, and to a lesser degree the thioxo-form. Hydrolysis resulted amongst others in the respective constituent arsenic-containing fatty acid (AsFA). Incubation of the cells with oxo-AsPC resulted in a toxicity similar to that determined for the hydrolysis product oxo-AsFA alone, and there were no indices for genotoxicity. Furthermore, the oxo-AsPC was readily taken up by the cells resulting in high cellular arsenic concentrations (50 μM incubation: 1112 ± 146 μM As cellular), whereas the thioxo-AsPC was substantially less bioavailable (50 μM incubation: 293 ± 115 μM As cellular). Speciation analysis revealed biotransformation of the AsPCs to a series of AsFAs in the culture medium, and, in the case of the oxo-AsPC, to as yet unidentified arsenic species in cell pellets. The results reveal the difficulty of toxicity studies of AsPCs in vitro, indicate that their toxicity might be largely governed by their arsenic fatty acid content and suggest a multifaceted human metabolism of food derived complex arsenolipids. KW - Biochemistry KW - Biological Sciences KW - Science and Mathematics KW - Books KW - Journals Y1 - 2020 U6 - https://doi.org/10.1039/d0mt00073f VL - 12 IS - 7 SP - 1159 EP - 1170 PB - Oxford University CY - Cambridge ER - TY - THES A1 - Finke, Hannah T1 - Toxicological Characterization of Arsenolipids in vitro and Analysis of Global DNA (Hydroxy)methylation in the Context of Aging, Trace Element Status, and Genomic Stability Y1 - 2020 ER -