TY - JOUR A1 - Ni, Binbin A1 - Cao, Xing A1 - Shprits, Yuri Y. A1 - Summers, Danny A1 - Gu, Xudong A1 - Fu, Song A1 - Lou, Yuequn T1 - Hot Plasma Effects on the Cyclotron-Resonant Pitch-Angle Scattering Rates of Radiation Belt Electrons Due to EMIC Waves JF - Geophysical research letters N2 - To investigate the hot plasma effects on the cyclotron-resonant interactions between electromagnetic ion cyclotron (EMIC) waves and radiation belt electrons in a realistic magnetospheric environment, calculations of the wave-induced bounce-averaged pitch angle diffusion coefficients are performed using both the cold and hot plasma dispersion relations. The results demonstrate that the hot plasma effects have a pronounced influence on the electron pitch angle scattering rates due to all three EMIC emission bands (H+, He+, and O+) when the hot plasma dispersion relation deviates significantly from the cold plasma approximation. For a given wave spectrum, the modification of the dispersion relation by hot anisotropic protons can strongly increase the minimum resonant energy for electrons interacting with O+ band EMIC waves, while the minimum resonant energies for H+ and He+ bands are not greatly affected. For H+ band EMIC waves, inclusion of hot protons tends to weaken the pitch angle scattering efficiency of >5MeV electrons. The most crucial differences introduced by the hot plasma effects occur for >3MeV electron scattering rates by He+ band EMIC waves. Mainly due to the changes of resonant frequency and wave group velocity when the hot protons are included, the difference in scattering rates can be up to an order of magnitude, showing a strong dependence on both electron energy and equatorial pitch angle. Our study confirms the importance of including hot plasma effects in modeling the scattering of ultra-relativistic radiation belt electrons by EMIC waves. Y1 - 2018 U6 - https://doi.org/10.1002/2017GL076028 SN - 0094-8276 SN - 1944-8007 VL - 45 IS - 1 SP - 21 EP - 30 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Long, Minyi A1 - Ni, Binbin A1 - Cao, Xing A1 - Gu, Xudong A1 - Kollmann, Peter A1 - Luo, Qiong A1 - Zhou, Ruoxian A1 - Guo, Yingjie A1 - Guo, Deyu A1 - Shprits, Yuri Y. T1 - Losses of radiation belt energetic particles by encounters with four of the inner Moons of Jupiter JF - Journal of geophysical research, Planets N2 - Based on an improved model of the moon absorption of Jovian radiation belt particles, we investigate quantitatively and comprehensively the absorption probabilities and particle lifetimes due to encounters with four of the inner moons of Jupiter (Amalthea, Thebe, Io, and Europa) inside L < 10. Our results demonstrate that the resultant average lifetimes of energetic protons and electrons vary dramatically between similar to 0.1 days and well above 1,000 days, showing a strong dependence on the particle equatorial pitch angle, kinetic energy and moon orbit. The average lifetimes of energetic protons and electrons against moon absorption are shortest for Io (i.e., similar to 0.1-10 days) and longest for Thebe (i.e., up to thousands of days), with the lifetimes in between for Europa and Amalthea. Due to the diploe tilt angle absorption effect, the average lifetimes of energetic protons and electrons vary markedly below and above alpha eq ${\alpha }_{\mathrm{e}\mathrm{q}}$ = 67 degrees. Overall, the average electron lifetimes exhibit weak pitch angle dependence, but the average proton lifetimes are strongly dependent on equatorial pitch angle. The average lifetimes of energetic protons decrease monotonically and substantially with the kinetic energy, but the average lifetimes of energetic electrons are roughly constant at energies 10 keV protons, the field-aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Our results suggest that the wave normal distribution of electromagnetic ion cyclotron waves plays an important role in the pitch angle evolution and scattering loss of ring current protons and should be incorporated in future global modeling of ring current dynamics. Y1 - 2019 U6 - https://doi.org/10.1029/2018GL081550 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 2 SP - 590 EP - 598 PB - American Geophysical Union CY - Washington ER -