TY - JOUR A1 - Wolff, Christian Michael A1 - Kristen-Jenny, Iris A1 - Schettler, Georg A1 - Plessen, Birgit A1 - Meyer, Hanno A1 - Dulski, Peter A1 - Naumann, Rudolf A1 - Brauer, Achim A1 - Verschuren, Dirk A1 - Haug, Gerald H. T1 - Modern seasonality in Lake Challa (Kenya/Tanzania) and its sedimentary documentation in recent lake sediments JF - Limnology and oceanography N2 - From November 2006 to January 2010, a sediment trap that was cleared monthly was deployed in Lake Challa, a deep stratified freshwater lake on the eastern slope of Mt. Kilimanjaro in southern Kenya. Geochemical data from sediment trap samples were compared with a broad range of limnological and meteorological parameters to characterize the effect of single parameters on productivity and sedimentation processes in the crater basin. During the southern hemisphere summer (November-March), when the water temperature is high and the lake is biologically productive (nondiatom algae), calcite predominated in the sediment trap samples. During the "long rain" season (March-May) a small amount of organic matter and lithogenic material caused by rainfall appeared. This was followed by the cool and windy months of the southern hemisphere winter (June-October) when diatoms were the main component, indicating a diatom bloom initiated by improvement of nutrient availability related to upwelling processes. The sediment trap data support the hypothesis that the light-dark lamination couplets, which are abundant in Lake Challa cores, reflect seasonal delivery to the sediments of diatom-rich particulates during the windy months and diatom-poor material during the wet season. However, interannual and spatial variability in upwelling and productivity patterns, as well as El Nino-Southern Oscillation (ENSO)-related rainfall and drought cycles, exert a strong influence on the magnitude and geochemical composition of particle export to the hypolimnion of Lake Challa. Y1 - 2014 U6 - https://doi.org/10.4319/lo.2014.59.5.1621 SN - 0024-3590 SN - 1939-5590 VL - 59 IS - 5 SP - 1621 EP - 1636 PB - Wiley CY - Waco ER - TY - JOUR A1 - Wolff, Christian Michael A1 - Haug, Gerald H. A1 - Timmermann, Axel A1 - Damste, Jaap S. Sinninghe A1 - Brauer, Achim A1 - Sigman, Daniel M. A1 - Cane, Mark A. A1 - Verschuren, Dirk T1 - Reduced interannual rainfall variability in East Africa during the last Ice Age JF - Science N2 - Interannual rainfall variations in equatorial East Africa are tightly linked to the El Nino Southern Oscillation (ENSO), with more rain and flooding during El Nino and droughts in La Nina years, both having severe impacts on human habitation and food security. Here we report evidence from an annually laminated lake sediment record from southeastern Kenya for interannual to centennial-scale changes in ENSO-related rainfall variability during the last three millennia and for reductions in both the mean rate and the variability of rainfall in East Africa during the Last Glacial period. Climate model simulations support forward extrapolation from these lake sediment data that future warming will intensify the interannual variability of East Africa's rainfall. Y1 - 2011 U6 - https://doi.org/10.1126/science.1203724 SN - 0036-8075 VL - 333 IS - 6043 SP - 743 EP - 747 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Swierczynski, Tina A1 - Lauterbach, Stefan A1 - Dulski, Peter A1 - Delgado, Jose Miguel Martins A1 - Merz, Bruno A1 - Brauer, Achim T1 - Mid- to late holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria) JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Annually laminated (varved) lake sediments with intercalated detrital layers resulting from sedimentary input by runoff events are ideal archives to establish precisely dated records of past extreme runoff events. In this study, the mid- to late Holocene varved sediments of Lake Mondsee (Upper Austria) were analysed by combining sedimentological, geophysical and geochemical methods. This approach allows to distinguish two types of detrital layers related to different types of extreme runoff events (floods and debris flows) and to detect changes in flood activity during the last 7100 years. In total, 271 flood and 47 debris flow layers, deposited during spring and summer, were identified, which cluster in 18 main flood episodes (FE 1-18) with durations of 30-50 years each. These main flood periods occurred during the Neolithic (7100-7050 vyr BP and 6470-4450 vyr BP), the late Bronze Age and the early Iron Age (3300-3250 and 2800-2750 vyr BP), the late Iron Age (2050-2000 vyr BP), throughout the Dark Ages Cold Period (1500-1200 vyr BP), and at the end of the Medieval Warm Period and the Little Ice Age (810-430 vyr BP). Summer flood episodes in Lake Mondsee are generally more abundant during the last 1500 years, often coinciding with major advances of Alpine glaciers. Prior to 1500 vyr BP, spring/summer floods and debris flows are generally less frequent, indicating a lower number of intense rainfall events that triggered erosion. In comparison with the increase of late Holocene flood activity in western and northwestern (NW) Europe, commencing already as early as 2800 yr BP, the hydro-meteorological shift in the Lake Mondsee region occurred much later. These time lags in the onset of increased hydrological activity might be either due to regional differences in atmospheric circulation pattern or to the sensitivity of the individual flood archives. The Lake Mondsee sediments represent the first precisely dated and several millennia long summer flood record for the northeastern (NE) Alps, a key region at the climatic boundary of Atlantic, Mediterranean and East European air masses, aiding a better understanding of regional and seasonal peculiarities of flood occurrence under changing climate conditions. (C) 2013 Elsevier Ltd. All rights reserved. KW - Varved lake sediments KW - Detrital layers KW - mu RF KW - Microfacies KW - Palaeofloods KW - Flood frequency Y1 - 2013 U6 - https://doi.org/10.1016/j.quascirev.2013.08.018 SN - 0277-3791 VL - 80 SP - 78 EP - 90 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Sarkar, Saswati A1 - Wilkes, Heinz A1 - Prasad, Sushma A1 - Brauer, Achim A1 - Riedel, Nils A1 - Stebich, Martina A1 - Basavaiah, Nathani A1 - Sachse, Dirk T1 - Spatial heterogeneity in lipid biomarker distributions in the catchment and sediments of a crater lake in central India JF - Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry N2 - The basin-scale spatial variability in lipid biomarker proxies in lacustrine sediments, which are established tools for studying continental environmental change, has rarely been examined. It is often implicitly assumed that a lake sediment core provides an average integral of catchment sources. Here we evaluated the distribution of lipid biomarkers in a modern ecosystem and compared it with the sedimentary record. We analyzed lipid biomarkers in terrestrial and aquatic organisms and in lake surface sediments from 17 locations within the saline-alkaline Lonar crater lake in central India. Terrestrial vegetation and lake surface sediments were characterized by relatively high average chain length (ACL) index values (29.6-32.8) of leaf wax n-alkanes, consistent with suggestions that plants in drier and warmer climates produce longer chain alkyl lipids than plants in cooler and humid areas. A heterogeneous spatial distribution of ACL values in lake surface sediments was found: at locations away from the shore, the values were highest (31 or more), possibly indicating different sources and/or transport of terrestrial biomarkers. In floating, benthic microbial mats and surface sediment, n-heptadecane, carotenoids, diploptene, phytol and tetrahymanol occurred in large amounts. Interestingly, these biomarkers of a unique bacterial community were found in substantially higher concentrations in nearshore sediment samples. We suggest that human influence and subsequent nutrient supply resulted in increased primary productivity, leading to an unusually high concentration of tetrahymanol in the nearshore sediments. In summary, the data showed that substantial heterogeneity existed within the lake, but leaf wax n-alkanes in a core from the center of the lake represented an integral of catchment conditions. However, lake level fluctuation may potentially affect aquatic lipid biomarker distributions in lacustrine sediments, in addition to source changes. Y1 - 2014 U6 - https://doi.org/10.1016/j.orggeochem.2013.11.009 SN - 0146-6380 VL - 66 SP - 125 EP - 136 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Ramisch, Arne A1 - Tjallingii, Rik A1 - Hartmann, Kai A1 - Diekmann, Bernhard A1 - Brauer, Achim T1 - Echo of the Younger Dryas in Holocene Lake Sediments on the Tibetan Plateau JF - Geophysical research letters N2 - Reading the sediment record in terms of past climates is challenging since linking climate change to the associated responses of sedimentary systems is not always straightforward. Here we analyze the erosional response of landscapes on the Tibetan Plateau to interglacial climate forcing. Using the theory of dynamical systems on Holocene time series of geochemical proxies, we derive a sedimentary response model that accurately simulates observed proxy variation in three lake records. The model suggests that millennial variations in sediment composition reflect a self-organization of landscapes in response to abrupt climate change between 11.6 and 11.9 ka BP. The self-organization is characterized by oscillations in sediment supply emerging from a feedback between physical and chemical erosion processes, with estimated response times between 3,000 to 18,000 years depending on catchment topography. The implications of our findings emphasize the need for landscape response models to decipher the paleoclimatic code in continental sediment records. Plain Language Summary Lake sediments are an important source of information on past climates. Reading the information is not always straightforward. Complex interactions in landscapes can affect the transmission of climatic signals to the sediment record. However, the exact nature of such complex interactions remains unknown. This study compares sediment deposits of three lakes on the Tibetan Plateau. The deposits are continuous records of landscape responses to climate change during the last 12,000 years. We identified a mathematical model that accurately simulates changes in sediment composition at all sites. The model simulations suggest that an abrupt warming at the end of the last glacial period destabilized the landscapes. This caused fluctuations in the transport of sediments, which persisted for several thousand years. Our findings present evidence for a long-lasting impact of abrupt climate change on fundamental Earth surface processes. Y1 - 2018 U6 - https://doi.org/10.1029/2018GL080225 SN - 0094-8276 SN - 1944-8007 VL - 45 IS - 20 SP - 154 EP - 163 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Ramisch, Arne A1 - Tjallingii, Rik A1 - Hartmann, Kai A1 - Diekmann, Bernhard A1 - Brauer, Achim T1 - Echo of the Younger Dryas in Holocene Lake Sediments on the Tibetan Plateau JF - Geophysical research letters N2 - Reading the sediment record in terms of past climates is challenging since linking climate change to the associated responses of sedimentary systems is not always straightforward. Here we analyze the erosional response of landscapes on the Tibetan Plateau to interglacial climate forcing. Using the theory of dynamical systems on Holocene time series of geochemical proxies, we derive a sedimentary response model that accurately simulates observed proxy variation in three lake records. The model suggests that millennial variations in sediment composition reflect a self-organization of landscapes in response to abrupt climate change between 11.6 and 11.9 ka BP. The self-organization is characterized by oscillations in sediment supply emerging from a feedback between physical and chemical erosion processes, with estimated response times between 3,000 to 18,000 years depending on catchment topography. The implications of our findings emphasize the need for landscape response models to decipher the paleoclimatic code in continental sediment records. Plain Language Summary Lake sediments are an important source of information on past climates. Reading the information is not always straightforward. Complex interactions in landscapes can affect the transmission of climatic signals to the sediment record. However, the exact nature of such complex interactions remains unknown. This study compares sediment deposits of three lakes on the Tibetan Plateau. The deposits are continuous records of landscape responses to climate change during the last 12,000 years. We identified a mathematical model that accurately simulates changes in sediment composition at all sites. The model simulations suggest that an abrupt warming at the end of the last glacial period destabilized the landscapes. This caused fluctuations in the transport of sediments, which persisted for several thousand years. Our findings present evidence for a long-lasting impact of abrupt climate change on fundamental Earth surface processes. Y1 - 2018 U6 - https://doi.org/10.1029/2018GL080225 SN - 0094-8276 SN - 1944-8007 VL - 45 IS - 20 SP - 11154 EP - 11163 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Rach, Oliver A1 - Kahmen, Ansgar A1 - Brauer, Achim A1 - Sachse, Dirk T1 - A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D/H ratios T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Past climatic change can be reconstructed from sedimentary archives by a number of proxies. However, few methods exist to directly estimate hydrological changes and even fewer result in quantitative data, impeding our understanding of the timing, magnitude and mechanisms of hydrological changes. Here we present a novel approach based on delta H-2 values of sedimentary lipid biomarkers in combination with plant physiological modeling to extract quantitative information on past changes in relative humidity. Our initial application to an annually laminated lacustrine sediment sequence from western Europe deposited during the Younger Dryas cold period revealed relative humidity changes of up to 15% over sub-centennial timescales, leading to major ecosystem changes, in agreement with palynological data from the region. We show that by combining organic geochemical methods and mechanistic plant physiological models on well characterized lacustrine archives it is possible to extract quantitative ecohydrological parameters from sedimentary lipid biomarker delta H-2 data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 660 KW - delta-D values KW - hydrogen-isotopic composition KW - Dryas cold period KW - n-alkanes record KW - leaf water KW - Younger Dryas KW - seasonal variation KW - Lake sediments KW - Central Europe KW - climate varibility Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418731 SN - 1866-8372 IS - 660 ER - TY - JOUR A1 - Rach, Oliver A1 - Kahmen, Ansgar A1 - Brauer, Achim A1 - Sachse, Dirk T1 - A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D/H ratios JF - Climate of the past : an interactive open access journal of the European Geosciences Union N2 - Past climatic change can be reconstructed from sedimentary archives by a number of proxies. However, few methods exist to directly estimate hydrological changes and even fewer result in quantitative data, impeding our understanding of the timing, magnitude and mechanisms of hydrological changes. Here we present a novel approach based on delta H-2 values of sedimentary lipid biomarkers in combination with plant physiological modeling to extract quantitative information on past changes in relative humidity. Our initial application to an annually laminated lacustrine sediment sequence from western Europe deposited during the Younger Dryas cold period revealed relative humidity changes of up to 15% over sub-centennial timescales, leading to major ecosystem changes, in agreement with palynological data from the region. We show that by combining organic geochemical methods and mechanistic plant physiological models on well characterized lacustrine archives it is possible to extract quantitative ecohydrological parameters from sedimentary lipid biomarker delta H-2 data. Y1 - 2017 U6 - https://doi.org/10.5194/cp-13-741-2017 SN - 1814-9324 SN - 1814-9332 VL - 13 SP - 741 EP - 757 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Rach, Oliver A1 - Engels, S. A1 - Kahmen, A. A1 - Brauer, Achim A1 - Martin-Puertas, C. A1 - van Geel, B. A1 - Sachse, Dirk T1 - Hydrological and ecological changes in western Europe between 3200 and 2000 years BP derived from lipid biomarker delta D values in lake Meerfelder Maar sediments JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - One of the most significant Late Holocene climate shifts occurred around 2800 years ago, when cooler and wetter climate conditions established in western Europe. This shift coincided with an abrupt change in regional atmospheric circulation between 2760 and 2560 cal years BP, which has been linked to a grand solar minimum with the same duration (the Homeric Minimum). We investigated the temporal sequence of hydroclimatic and vegetation changes across this interval of climatic change (Homeric climate oscillation) by using lipid biomarker stable hydrogen isotope ratios (ED values) and pollen assemblages from the annually-laminated sediment record from lake Meerfelder Maar (Germany). Over the investigated interval (3200-2000 varve years BP), terrestrial lipid biomarker ED showed a gradual trend to more negative values, consistent with the western Europe long-term climate trend of the Late Holocene. At ca. 2640 varve years BP we identified a strong increase in aquatic plants and algal remains, indicating a rapid change in the aquatic ecosystem superimposed on this long-term trend. Interestingly, this aquatic ecosystem change was accompanied by large changes in ED values of aquatic lipid biomarkers, such as nC(21) and nC(23) (by between 22 and 30%(0)). As these variations cannot solely be explained by hydroclimate changes, we suggest that these changes in the Wag value were influenced by changes in n-alkane source organisms. Our results illustrate that if ubiquitous aquatic lipid biomarkers are derived from a limited pool of organisms, changes in lake ecology can be a driving factor for variations on sedimentary lipid MN values, which then could be easily misinterpreted in terms of hydro climatic changes. (C) 2017 Elsevier Ltd. All rights reserved. KW - Holocene KW - Climate dynamics KW - Paleoclimatology KW - Western Europe KW - Continental biomarkers KW - Organic geochemistry KW - Stable isotopes KW - Vegetation dynamics Y1 - 2017 U6 - https://doi.org/10.1016/j.quascirev.2017.07.019 SN - 0277-3791 VL - 172 SP - 44 EP - 54 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Rach, Oliver A1 - Brauer, Achim A1 - Wilkes, Heinz A1 - Sachse, Dirk T1 - Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe JF - Nature geoscience N2 - The general warming trend of the last deglaciation was interrupted by the Younger Dryas, a period of abrupt cooling and widespread environmental change(1-10). Ice core records suggest the abrupt cooling began 12,846 years ago in Greenland(10), about 170 years before the significant environmental and vegetation change in western Europe(7) classically defined as the Younger Dryas. However, this difference in timing falls within age model uncertainties. Here we use the hydrogen isotope composition of lipid biomarkers from precisely dated varved sediments from Lake Meerfelder Maar to reconstruct hydroclimate over western Europe. We observe a decrease in the hydrogen isotope values of both aquatic and terrestrial lipids 12,850 years ago, indicating cooling climate in this region synchronous with the abrupt cooling in Greenland. A second drop occurs 170 years later, mainly in the hydrogen isotope record of aquatic lipids but to a lesser extent in the terrestrial lipids, which we attribute to aridification, as well as a change in moisture source and pathway. We thus confirm that there was indeed a lag between cooling and substantial hydrologic and environmental change in western Europe. We suggest the delay is related to the expansion of sea ice in the North Atlantic Ocean and the subsequent southward migration of the westerly wind system(9). We further suggest that these hydrological changes amplified environmental change in western Europe at the onset of the Younger Dryas. Y1 - 2014 U6 - https://doi.org/10.1038/NGEO2053 SN - 1752-0894 SN - 1752-0908 VL - 7 IS - 2 SP - 109 EP - 112 PB - Nature Publ. Group CY - New York ER - TY - GEN A1 - Pauly, Maren A1 - Helle, Gerhard A1 - Miramont, Cécile A1 - Büntgen, Ulf A1 - Treydte, Kerstin A1 - Reinig, Frederick A1 - Guibal, Frédéric A1 - Sivan, Olivier A1 - Heinrich, Ingo A1 - Riedel, Frank A1 - Kromer, Bernd A1 - Balanzategui, Daniel A1 - Wacker, Lukas A1 - Sookdeo, Adam Sookdeo A1 - Brauer, Achim T1 - Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (delta O-18, delta C-13) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900-12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (delta O-18(sw)) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (delta O-18(sw)), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low delta O-18(sw)) versus Mediterranean (high delta O-18(sw)) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1135 KW - annually laminated sediments KW - lake Meerfelder Maar KW - isotopic composition KW - oxygen isotope KW - climate KW - cellulose KW - radiocarbon KW - temperature KW - record KW - model Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459169 SN - 1866-8372 IS - 1135 ER - TY - JOUR A1 - Pauly, Maren A1 - Helle, Gerhard A1 - Miramont, Cecile A1 - Buentgen, Ulf A1 - Treydte, Kerstin A1 - Reinig, Frederick A1 - Guibal, Frederic A1 - Sivan, Olivier A1 - Heinrich, Ingo A1 - Riedel, Frank A1 - Kromer, Bernd A1 - Balanzategui, Daniel A1 - Wacker, Lukas A1 - Sookdeo, Adam A1 - Brauer, Achim T1 - Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas JF - Scientific reports N2 - Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (delta O-18, delta C-13) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900-12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (delta O-18(sw)) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (delta O-18(sw)), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low delta O-18(sw)) versus Mediterranean (high delta O-18(sw)) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-32251-2 SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Obreht, Igor A1 - Wörmer, Lars A1 - Brauer, Achim A1 - Wendt, Jenny A1 - Alfken, Susanne A1 - De Vleeschouwer, David A1 - Elvert, Marcus A1 - Hinrichs, Kai-Uwe T1 - An annually resolved record of Western European vegetation response to Younger Dryas cooling JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - The regional patterns and timing of the Younger Dryas cooling in the North Atlantic realm were complex and are mechanistically incompletely understood. To enhance understanding of regional climate patterns, we present molecular biomarker records at subannual to annual resolution by mass spectrometry imaging (MSI) of sediments from the Lake Meerfelder Maar covering the Allerod-Younger Dryas transition. These analyses are supported by conventional extraction-based molecular-isotopic analyses, which both validate the imaging results and constrain the sources of the target compounds. The targeted fatty acid biomarkers serve as a gauge of the response of the local aquatic and terrestrial ecosystem to climate change. Based on the comparison of our data with existing data from Meerfelder Maar, we analyse the short-term environmental evolution in Western Europe during the studied time interval and confirm the previously reported delayed hydrological response to Greenland cooling. However, despite a detected delay of Western European environmental change of similar to 135 years, our biomarker data show statistically significant correlation with deuterium excess in Greenland ice core at - annual resolution during this time-transgressive cooling. This suggests a coherent atmospheric forcing across the North Atlantic realm during this transition. We propose that Western European cooling was postponed due to major reorganization of the westerlies that were intermittently forcing warmer and wetter air masses from lower latitudes to Western Europe and thus resulted in delayed cooling relative to Greenland. KW - lateglacial KW - paleoclimatology KW - Western Europe KW - Meerfelder Maar KW - high-resolution biomarkers KW - fatty acids KW - FT-ICR-MS KW - mass spectrometry KW - imaging Y1 - 2020 U6 - https://doi.org/10.1016/j.quascirev.2020.106198 SN - 0277-3791 VL - 231 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Nwosu, Ebuka Canisius A1 - Roeser, Patricia Angelika A1 - Yang, Sizhong A1 - Pinkerneil, Sylvia A1 - Ganzert, Lars A1 - Dittmann, Elke A1 - Brauer, Achim A1 - Wagner, Dirk A1 - Liebner, Susanne T1 - Species-level spatio-temporal dynamics of cyanobacteria in a hard-water temperate lake in the Southern Baltics JF - Frontiers in microbiology N2 - Cyanobacteria are important primary producers in temperate freshwater ecosystems. However, studies on the seasonal and spatial distribution of cyanobacteria in deep lakes based on high-throughput DNA sequencing are still rare. In this study, we combined monthly water sampling and monitoring in 2019, amplicon sequence variants analysis (ASVs; a proxy for different species) and quantitative PCR targeting overall cyanobacteria abundance to describe the seasonal and spatial dynamics of cyanobacteria in the deep hard-water oligo-mesotrophic Lake Tiefer See, NE Germany. We observed significant seasonal variation in the cyanobacterial community composition (p < 0.05) in the epi- and metalimnion layers, but not in the hypolimnion. In winter-when the water column is mixed-picocyanobacteria (Synechococcus and Cyanobium) were dominant. With the onset of stratification in late spring, we observed potential niche specialization and coexistence among the cyanobacteria taxa driven mainly by light and nutrient dynamics. Specifically, ASVs assigned to picocyanobacteria and the genus Planktothrix were the main contributors to the formation of deep chlorophyll maxima along a light gradient. While Synechococcus and different Cyanobium ASVs were abundant in the epilimnion up to the base of the euphotic zone from spring to fall, Planktothrix mainly occurred in the metalimnetic layer below the euphotic zone where also overall cyanobacteria abundance was highest in summer. Our data revealed two potentially psychrotolerant (cold-adapted) Cyanobium species that appear to cope well under conditions of lower hypolimnetic water temperature and light as well as increasing sediment-released phosphate in the deeper waters in summer. The potential cold-adapted Cyanobium species were also dominant throughout the water column in fall and winter. Furthermore, Snowella and Microcystis-related ASVs were abundant in the water column during the onset of fall turnover. Altogether, these findings suggest previously unascertained and considerable spatiotemporal changes in the community of cyanobacteria on the species level especially within the genus Cyanobium in deep hard-water temperate lakes. KW - Cyanobium KW - picocyanobacteria diversity KW - amplicon sequencing KW - lake monitoring KW - ecological succession KW - lake stratification KW - psychrotolerant Y1 - 2021 U6 - https://doi.org/10.3389/fmicb.2021.761259 SN - 1664-302X VL - 12 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Nwosu, Ebuka Canisius A1 - Roeser, Patricia Angelika A1 - Yang, Sizhong A1 - Ganzert, Lars A1 - Dellwig, Olaf A1 - Pinkerneil, Sylvia A1 - Brauer, Achim A1 - Dittmann, Elke A1 - Wagner, Dirk A1 - Liebner, Susanne T1 - From water into sediment-tracing freshwater cyanobacteria via DNA analyses JF - Microorganisms : open access journal N2 - Sedimentary ancient DNA-based studies have been used to probe centuries of climate and environmental changes and how they affected cyanobacterial assemblages in temperate lakes. Due to cyanobacteria containing potential bloom-forming and toxin-producing taxa, their approximate reconstruction from sediments is crucial, especially in lakes lacking long-term monitoring data. To extend the resolution of sediment record interpretation, we used high-throughput sequencing, amplicon sequence variant (ASV) analysis, and quantitative PCR to compare pelagic cyanobacterial composition to that in sediment traps (collected monthly) and surface sediments in Lake Tiefer See. Cyanobacterial composition, species richness, and evenness was not significantly different among the pelagic depths, sediment traps and surface sediments (p > 0.05), indicating that the cyanobacteria in the sediments reflected the cyanobacterial assemblage in the water column. However, total cyanobacterial abundances (qPCR) decreased from the metalimnion down the water column. The aggregate-forming (Aphanizomenon) and colony-forming taxa (Snowella) showed pronounced sedimentation. In contrast, Planktothrix was only very poorly represented in sediment traps (meta- and hypolimnion) and surface sediments, despite its highest relative abundance at the thermocline (10 m water depth) during periods of lake stratification (May-October). We conclude that this skewed representation in taxonomic abundances reflects taphonomic processes, which should be considered in future DNA-based paleolimnological investigations. KW - Aphanizomenon KW - Planktothrix KW - Snowella KW - cyanobacteria sedimentation KW - lake monitoring KW - sedimentary ancient DNA KW - sediment traps KW - environmental reconstruction Y1 - 2021 U6 - https://doi.org/10.3390/microorganisms9081778 SN - 2076-2607 VL - 9 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Nwosu, Ebuka Canisius A1 - Brauer, Achim A1 - Kaiser, Jérôme A1 - Horn, Fabian A1 - Wagner, Dirk A1 - Liebner, Susanne T1 - Evaluating sedimentary DNA for tracing changes in cyanobacteria dynamics from sediments spanning the last 350 years of Lake Tiefer See, NE Germany JF - Journal of paleolimnology N2 - Since the beginning of the Anthropocene, lacustrine biodiversity has been influenced by climate change and human activities. These factors advance the spread of harmful cyanobacteria in lakes around the world, which affects water quality and impairs the aquatic food chain. In this study, we assessed changes in cyanobacterial community dynamics via sedimentary DNA (sedaDNA) from well-dated lake sediments of Lake Tiefer See, which is part of the Klocksin Lake Chain spanning the last 350 years. Our diversity and community analysis revealed that cyanobacterial communities form clusters according to the presence or absence of varves. Based on distance-based redundancy and variation partitioning analyses (dbRDA and VPA) we identified that intensified lake circulation inferred from vegetation openness reconstructions, delta C-13 data (a proxy for varve preservation) and total nitrogen content were abiotic factors that significantly explained the variation in the reconstructed cyanobacterial community from Lake Tiefer See sediments. Operational taxonomic units (OTUs) assigned to Microcystis sp. and Aphanizomenon sp. were identified as potential eutrophication-driven taxa of growing importance since circa common era (ca. CE) 1920 till present. This result is corroborated by a cyanobacteria lipid biomarker analysis. Furthermore, we suggest that stronger lake circulation as indicated by non-varved sediments favoured the deposition of the non-photosynthetic cyanobacteria sister clade Sericytochromatia, whereas lake bottom anoxia as indicated by subrecent- and recent varves favoured the Melainabacteria in sediments. Our findings highlight the potential of high-resolution amplicon sequencing in investigating the dynamics of past cyanobacterial communities in lake sediments and show that lake circulation, anoxic conditions, and human-induced eutrophication are main factors explaining variations in the cyanobacteria community in Lake Tiefer See during the last 350 years. KW - Late Holocene KW - Methylheptadecanes KW - Varves KW - Anthropocene KW - Sericytochromatia KW - Melainabacteria Y1 - 2021 U6 - https://doi.org/10.1007/s10933-021-00206-9 SN - 0921-2728 SN - 1573-0417 VL - 66 IS - 3 SP - 279 EP - 296 PB - Springer CY - Dordrecht ER - TY - GEN A1 - Neugebauer, Ina A1 - Schwab, M. J. A1 - Waldmann, Nicolas D. A1 - Tjallingii, Rik A1 - Frank, U. A1 - Hadzhiivanova, E. A1 - Naumann, R. A1 - Taha, N. A1 - Agnon, Amotz A1 - Enzel, Y. A1 - Brauer, Achim T1 - Hydroclimatic variability in the Levant during the early last glacial (similar to 117-75 ka) derived from micro-facies analyses of deep Dead Sea sediments T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by micro-X-ray fluorescence (mu XRF) scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca. 117 to 75 ka, i. e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several metres thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at similar to 110-108 +/- 5 and similar to 93-87 +/- 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during Marine Isotope Stage (MIS) 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in situ beach deposit. Two intervals of higher lake stands at similar to 108-93 +/- 6 and similar to 87-75 +/- 7 ka correspond to interstadial conditions in the central Mediterranean, i. e. pollen zones St. Germain I and II in Monticchio, and Greenland interstadials (GI) 24+23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 549 KW - Lake Lisan KW - Middle-east KW - ice-sheet KW - hydrological condition KW - climate variability KW - tropical plumes KW - Winter rainfall KW - Southern Levant KW - soreq cave KW - Near-east Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411879 SN - 1866-8372 IS - 549 ER - TY - JOUR A1 - Neugebauer, Ina A1 - Brauer, Achim A1 - Draeger, Nadine A1 - Dulski, Peter A1 - Wulf, Sabine A1 - Plessen, Birgit A1 - Mingram, Jens A1 - Herzschuh, Ulrike A1 - Brande, Arthur T1 - A Younger Dryas varve chronology from the Rehwiese palaeolake record in NE-Germany JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - The first 1400-year floating varve chronology for north-eastern Germany covering the late Allered to the early Holocene has been established by microscopic varve counts from the Rehwiese palaeolake sediment record. The Laacher See Tephra (LST), at the base of the studied interval, forms the tephrochronological anchor point. The fine laminations were examined using a combination of micro-facies and mu XRF analyses and are typical of calcite varves, which in this case provide mainly a warm season signal. Two varve types with different sub-layer structures have been distinguished: (I) complex varves consisting of up to four seasonal sub-layers formed during the Allered and early Holocene periods, and, (II) simple two sub-layer type varves only occurring during the Younger Dryas. The precision of the chronology has been improved by varve-to-varve comparison of two independently analyzed sediment profiles based on well-defined micro-marker layers. This has enabled both (1) the precise location of single missing varies in one of the sediment profiles, and, (2) the verification of varve interpolation in disturbed varve intervals in the parallel core. Inter-annual and decadal-scale variability in sediment deposition processes were traced by multi-proxy data series including seasonal layer thickness, high-resolution element scans and total organic and inorganic carbon data at a five-varve resolution. These data support the idea of a two-phase Younger Dryas, with the first interval (12,675-12,275 varve years BP) characterised by a still significant but gradually decreasing warm-season calcite precipitation and a second phase (12,275-11,690 varve years BP) with only weak calcite precipitation. Detailed correlation of these two phases with the Meerfelder Maar record based on the LST isochrone and independent varve counts provides clues about regional differences and seasonal aspects of YD climate change along a transect from a location proximal to the North Atlantic in the west to a more continental site in the east KW - Varve chronology KW - Micro-fades KW - Micro-XRF KW - Younger Dryas KW - North-eastern Germany Y1 - 2012 U6 - https://doi.org/10.1016/j.quascirev.2011.12.010 SN - 0277-3791 VL - 36 IS - 10 SP - 91 EP - 102 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Neugebauer, I. A1 - Schwab, M. J. A1 - Waldmann, N. D. A1 - Tjallingii, Rik A1 - Frank, U. A1 - Hadzhiivanova, E. A1 - Naumann, R. A1 - Taha, N. A1 - Agnon, A. A1 - Enzel, Y. A1 - Brauer, Achim T1 - Hydroclimatic variability in the Levant during the early last glacial (similar to 117-75 ka) derived from micro-facies analyses of deep Dead Sea sediments JF - Climate of the past : an interactive open access journal of the European Geosciences Union N2 - The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by micro-X-ray fluorescence (mu XRF) scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca. 117 to 75 ka, i. e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several metres thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at similar to 110-108 +/- 5 and similar to 93-87 +/- 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during Marine Isotope Stage (MIS) 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in situ beach deposit. Two intervals of higher lake stands at similar to 108-93 +/- 6 and similar to 87-75 +/- 7 ka correspond to interstadial conditions in the central Mediterranean, i. e. pollen zones St. Germain I and II in Monticchio, and Greenland interstadials (GI) 24+23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period. Y1 - 2016 U6 - https://doi.org/10.5194/cp-12-75-2016 SN - 1814-9324 SN - 1814-9332 VL - 12 SP - 75 EP - 90 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Müller, Daniela A1 - Tjallingii, Rik A1 - Plociennik, Mateusz A1 - Luoto, Tomi P. A1 - Kotrys, Bartosz A1 - Plessen, Birgit A1 - Ramisch, Arne A1 - Schwab, Markus Julius A1 - Blaszkiewicz, Miroslaw A1 - Slowinski, Michal A1 - Brauer, Achim T1 - New insights into lake responses to rapid climate change BT - The Younger Dryas in Lake Goscia(z) over dot, central Poland JF - Boreas N2 - The sediment profile from Lake Goscia(z) over dot in central Poland comprises a continuous, seasonally resolved and exceptionally well-preserved archive of the Younger Dryas (YD) climate variation. This provides a unique opportunity for detailed investigation of lake system responses during periods of rapid climate cooling (YD onset) and warming (YD termination). The new varve record of Lake Goscia(z) over dot presented here spans 1662 years from the late Allerod (AL) to the early Preboreal (PB). Microscopic varve counting provides an independent chronology with a YD duration of 1149+14/-22 years, which confirms previous results of 1140 +/- 40 years. We link stable oxygen isotopes and chironomid-based air temperature reconstructions with the response of various geochemical and varve microfacies proxies especially focusing on the onset and termination of the YD. Cooling at the YD onset lasted similar to 180 years, which is about a century longer than the terminal warming that was completed in similar to 70 years. During the AL/YD transition, environmental proxy data lagged the onset of cooling by similar to 90 years and revealed an increase of lake productivity and internal lake re-suspension as well as slightly higher detrital sediment input. In contrast, rapid warming and environmental changes during the YD/PB transition occurred simultaneously. However, initial changes such as declining diatom deposition and detrital input occurred already a few centuries before the rapid warming at the YD/PB transition. These environmental changes likely reflect a gradual increase in summer air temperatures already during the YD. Our data indicate complex and differing environmental responses to the major climate changes related to the YD, which involve different proxy sensitivities and threshold processes. KW - central Poland KW - Younger Dryas KW - sedimentation pattern KW - lake sediments Y1 - 2021 U6 - https://doi.org/10.23689/fidgeo-4033 SN - 0300-9483 SN - 1502-3885 VL - 50 IS - 2 SP - 535 EP - 555 PB - Wiley CY - Hoboken ER -