TY - JOUR A1 - Heinze, Johannes A1 - Simons, Nadja K. A1 - Seibold, Sebastian A1 - Wacker, Alexander A1 - Weithoff, Guntram A1 - Gossner, Martin M. A1 - Prati, Daniel A1 - Bezemer, T. Martijn A1 - Joshi, Jasmin Radha T1 - The relative importance of plant-soil feedbacks for plant-species performance increases with decreasing intensity of herbivory JF - Oecologia N2 - Under natural conditions, aboveground herbivory and plant-soil feedbacks (PSFs) are omnipresent interactions strongly affecting individual plant performance. While recent research revealed that aboveground insect herbivory generally impacts the outcome of PSFs, no study tested to what extent the intensity of herbivory affects the outcome. This, however, is essential to estimate the contribution of PSFs to plant performance under natural conditions in the field. Here, we tested PSF effects both with and without exposure to aboveground herbivory for four common grass species in nine grasslands that formed a gradient of aboveground invertebrate herbivory. Without aboveground herbivores, PSFs for each of the four grass species were similar in each of the nine grasslands-both in direction and in magnitude. In the presence of herbivores, however, the PSFs differed from those measured under herbivory exclusion, and depended on the intensity of herbivory. At low levels of herbivory, PSFs were similar in the presence and absence of herbivores, but differed at high herbivory levels. While PSFs without herbivores remained similar along the gradient of herbivory intensity, increasing herbivory intensity mostly resulted in neutral PSFs in the presence of herbivores. This suggests that the relative importance of PSFs for plant-species performance in grassland communities decreases with increasing intensity of herbivory. Hence, PSFs might be more important for plant performance in ecosystems with low herbivore pressure than in ecosystems with large impacts of insect herbivores. KW - Plant-soil feedback KW - Herbivorous insects KW - Field conditions KW - Selective herbivory KW - Nutritional quality Y1 - 2019 U6 - https://doi.org/10.1007/s00442-019-04442-9 SN - 0029-8549 SN - 1432-1939 VL - 190 IS - 3 SP - 651 EP - 664 PB - Springer CY - New York ER - TY - JOUR A1 - Bukovinszky, Tibor A1 - Verschoor, Antonie M. A1 - Helmsing, Nico R. A1 - Bezemer, T. Martijn A1 - Bakker, Elisabeth S. A1 - Vos, Matthijs A1 - Domis, Lisette Nicole de Senerpont T1 - The Good, the bad and the plenty Interactive effects of food quality and quantity on the growth of different daphnia species JF - PLoS one N2 - Effects of food quality and quantity on consumers are neither independent nor interchangeable. Although consumer growth and reproduction show strong variation in relation to both food quality and quantity, the effects of food quality or food quantity have usually been studied in isolation. In two experiments, we studied the growth and reproduction in three filter-feeding freshwater zooplankton species, i.e. Daphnia galeata x hyalina, D. pulicaria and D. magna, on their algal food (Scenedesmus obliquus), varying in carbon to phosphorus (C:P) ratios and quantities (concentrations). In the first experiment, we found a strong positive effect of the phosphorus content of food on growth of Daphnia, both in their early and late juvenile development. Variation in the relationship between the P-content of animals and their growth rate reflected interspecific differences in nutrient requirements. Although growth rates typically decreased as development neared maturation, this did not affect these species-specific couplings between growth rate and Daphnia P-content. In the second experiment, we examined the effects of food quality on Daphnia growth at different levels of food quantity. With the same decrease in P-content of food, species with higher estimated P-content at zero growth showed a larger increase in threshold food concentrations (i.e. food concentration sufficient to meet metabolic requirements but not growth). These results suggest that physiological processes such as maintenance and growth may in combination explain effects of food quality and quantity on consumers. Our study shows that differences in response to variation in food quality and quantity exist between species. As a consequence, species-specific effects of food quality on consumer growth will also determine how species deal with varying food levels, which has implications for resource-consumer interactions. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0042966 SN - 1932-6203 VL - 7 IS - 9 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Bukovinszky, Tibor A1 - Helmsing, Nico R. A1 - Grau, R. A. A1 - Bakker, Elisabeth S. A1 - Bezemer, T. Martijn A1 - Vos, Matthijs A1 - Uittenhout, H. A1 - Verschoor, A. M. T1 - A device to study the behavioral responses of zooplankton to food quality and quantity JF - Journal of insect behavior N2 - In order to explore the behavioral mechanisms underlying aggregation of foragers on local resource patches, it is necessary to manipulate the location, quality and quantity of food patches. This requires careful control over the conditions in the foraging arena, which may be a challenging task in the case of aquatic resource-consumer systems, like that of freshwater zooplankton feeding on suspended algal cells. We present an experimental tool designed to aid behavioral ecologists in exploring the consequences of resource characteristics for zooplankton aggregation behavior and movement decisions under conditions where the boundaries and characteristics (quantity and quality) of food patches can be standardized. The aggregation behavior of Daphnia magna and D. galeata x hyalina was tested in relation to i) the presence or absence of food or ii) food quality, where algae of high or low nutrient (phosphorus) content were offered in distinct patches. Individuals of both Daphnia species chose tubes containing food patches and D. galeata x hyalina also showed a preference towards food patches of high nutrient content. We discuss how the described equipment complements other behavioral approaches providing a useful tool to understand animal foraging decisions in environments with heterogeneous resource distributions. KW - Foraging behavior KW - behavioral choice KW - food preference KW - Daphnia KW - flow-through vessel Y1 - 2013 U6 - https://doi.org/10.1007/s10905-012-9366-0 SN - 0892-7553 VL - 26 IS - 4 SP - 453 EP - 465 PB - Springer CY - New York ER -