TY - JOUR A1 - Zhou, Ying A1 - Zhang, Ling A1 - Gui, Jiadong A1 - Dong, Fang A1 - Cheng, Sihua A1 - Mei, Xin A1 - Zhang, Linyun A1 - Li, Yongqing A1 - Su, Xinguo A1 - Baldermann, Susanne A1 - Watanabe, Naoharu A1 - Yang, Ziyin T1 - Molecular Cloning and Characterization of a Short-Chain Dehydrogenase Showing Activity with Volatile Compounds Isolated from Camellia sinensis JF - Plant molecular biology reporter N2 - Camellia sinensis synthesizes and emits a large variety of volatile phenylpropanoids and benzenoids (VPB). To investigate the enzymes involved in the formation of these VPB compounds, a new C. sinensis short-chain dehydrogenase/reductase (CsSDR) was isolated, cloned, sequenced, and functionally characterized. The complete open reading frame of CsSDR contains 996 nucleotides with a calculated protein molecular mass of 34.5 kDa. The CsSDR recombinant protein produced in Escherichia coli exhibited dehydrogenase-reductase activity towards several major VPB compounds in C. sinensis flowers with a strong preference for NADP/NADPH co-factors, and showed affinity for (R)/(S)-1-phenylethanol (1PE), phenylacetaldehyde, benzaldehyde, and benzyl alcohol, and no affinity for acetophenone (AP) and 2-phenylethanol. CsSDR showed the highest catalytic efficiency towards (R)/(S)-1PE. Furthermore, the transient expression analysis in Nicotiana benthamiana plants validated that CsSDR could convert 1PE to AP in plants. CsSDR transcript level was not significantly affected by floral development and some jasmonic acid-related environmental stress, and CsSDR transcript accumulation was detected in most floral tissues such as receptacle and anther, which were main storage locations of VPB compounds. Our results indicate that CsSDR is expressed in C. sinensis flowers and is likely to contribute to a number of floral VPB compounds including the 1PE derivative AP. KW - Camellia sinensis KW - 1-Phenylethanol KW - Phenylpropanoids KW - Short chain dehydrogenase KW - Volatile compound Y1 - 2015 U6 - https://doi.org/10.1007/s11105-014-0751-z SN - 0735-9640 SN - 1572-9818 VL - 33 IS - 2 SP - 253 EP - 263 PB - Springer CY - New York ER - TY - JOUR A1 - Zhou, Ying A1 - Zeng, Lanting A1 - Fu, Xiumin A1 - Mei, Xin A1 - Cheng, Sihua A1 - Liao, Yinyin A1 - Deng, Rufang A1 - Xu, Xinlan A1 - Jiang, Yueming A1 - Duan, Xuewu A1 - Baldermann, Susanne A1 - Yang, Ziyin T1 - The sphingolipid biosynthetic enzyme Sphingolipid delta8 desaturase is important for chilling resistance of tomato JF - Scientific reports N2 - The physiological functions of sphingolipids in animals have been intensively studied, while less attention has been paid to their roles in plants. Here, we reveal the involvement of sphingolipid delta8 desaturase (SlSLD) in the chilling resistance of tomato (Solanum lycopersicum cv. Micro-Tom). We used the virus-induced gene silencing (VIGS) approach to knock-down SlSLD expression in tomato leaves, and then evaluated chilling resistance. Changes in leaf cell structure under a chilling treatment were observed by transmission electron microscopy. In control plants, SlSLD was highly expressed in the fruit and leaves in response to a chilling treatment. The degree of chilling damage was greater in SlSLD-silenced plants than in control plants, indicating that SlSLD knock-down significantly reduced the chilling resistance of tomato. Compared with control plants, SlSLD-silenced plants showed higher relative electrolytic leakage and malondialdehyde content, and lower superoxide dismutase and peroxidase activities after a chilling treatment. Chilling severely damaged the chloroplasts in SlSLD-silenced plants, resulting in the disruption of chloroplast membranes, swelling of thylakoids, and reduced granal stacking. Together, these results show that SlSLD is crucial for chilling resistance in tomato. Y1 - 2016 U6 - https://doi.org/10.1038/srep38742 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Yang, Ziyin A1 - Baldermann, Susanne A1 - Watanabe, Naoharu T1 - Recent studies of the volatile compounds in tea JF - FOOD RESEARCH INTERNATIONAL N2 - Tea aroma is one of the most important factors affecting the character and quality of tea. Recent advances in methods and instruments for separating and identifying volatile compounds have led to intensive investigations of volatile compounds in tea. These studies have resulted in a number of insightful and useful discoveries. Here we summarize the recent investigations into tea volatile compounds: the volatile compounds in tea products; the metabolic pathways of volatile formation in tea plants and the glycosidically-bound volatile compounds in tea; and the techniques used for studying such compounds. Finally, we discuss practical applications for the improvement of aroma and flavor quality in teas. (C) 2013 Elsevier Ltd. All rights reserved. KW - Biosynthesis KW - Precursor KW - Stress KW - Tea KW - Volatile Y1 - 2013 U6 - https://doi.org/10.1016/j.foodres.2013.02.011 SN - 0963-9969 VL - 53 IS - 2 SP - 585 EP - 599 PB - ELSEVIER SCIENCE BV CY - AMSTERDAM ER - TY - JOUR A1 - Yamamoto, Masayoshi A1 - Baldermann, Susanne A1 - Yoshikawa, Keisuke A1 - Fujita, Akira A1 - Mase, Nobuyuki A1 - Watanabe, Naoharu T1 - Determination of volatile compounds in four commercial samples of japanese green algae using solid phase microextraction gas chromatography mass spectrometry JF - The ScientificWorld journal N2 - Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings. Y1 - 2014 U6 - https://doi.org/10.1155/2014/289780 SN - 1537-744X PB - Hindawi Publishing Corp. CY - New York ER - TY - JOUR A1 - Yadav, Heena A1 - Dreher, Dorothée A1 - Athmer, Benedikt A1 - Porzel, Andrea A1 - Gavrin, Aleksandr A1 - Baldermann, Susanne A1 - Tissier, Alain A1 - Hause, Bettina T1 - Medicago TERPENE SYNTHASE 10 is involved in defense against an oomycete root pathogen JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - In nature, plants interact with numerous beneficial or pathogenic soil-borne microorganisms. Plants have developed various defense strategies to expel pathogenic microbes, some of which function soon after pathogen infection. We used Medicago truncatula and its oomycete pathogen Aphanomyces euteiches to elucidate early responses of the infected root. A. euteiches causes root rot disease in legumes and is a limiting factor in legume production. Transcript profiling of seedlings and adult plant roots inoculated with A. euteiches zoospores for 2 h revealed specific upregulation of a gene encoding a putative sesquiterpene synthase (M. truncatula TERPENE SYNTHASE 10 [MtTPS10]) in both developmental stages. MtTPS10 was specifically expressed in roots upon oomycete infection. Heterologous expression of MtTPS10 in yeast led to production of a blend of sesquiterpenes and sesquiterpene alcohols, with NMR identifying a major peak corresponding to himalachol. Moreover, plants carrying a tobacco (Nicotiana tabacum) retrotransposon Tnt1 insertion in MtTPS10 lacked the emission of sesquiterpenes upon A. euteiches infection, supporting the assumption that the identified gene encodes a multiproduct sesquiterpene synthase. Mttps10 plants and plants with reduced MtTPS10 transcript levels created by expression of an MtTPS10-artificial microRNA in roots were more susceptible to A. euteiches infection than were the corresponding wild-type plants and roots transformed with the empty vector, respectively. Sesquiterpenes produced by expression of MtTPS10 in yeast also inhibited mycelial growth and A. euteiches zoospore germination. These data suggest that sesquiterpene production in roots by MtTPS10 plays a previously unrecognized role in the defense response of M. truncatula against A. euteiches. Y1 - 2019 U6 - https://doi.org/10.1104/pp.19.00278 SN - 0032-0889 SN - 1532-2548 VL - 180 IS - 3 SP - 1598 EP - 1613 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Witzel, Katja A1 - Strehmel, Nadine A1 - Baldermann, Susanne A1 - Neugart, Susanne A1 - Becker, Yvonne A1 - Becker, Matthias A1 - Berger, Beatrice A1 - Scheel, Dierk A1 - Grosch, Rita A1 - Schreiner, Monika A1 - Ruppel, Silke T1 - Arabidopsis thaliana root and root exudate metabolism is altered by the growth-promoting bacterium Kosakonia radicincitans DSM 16656(T) JF - Plant and soil N2 - Plant growth-promoting bacteria (PGPB) affect host physiological processes in various ways. This study aims at elucidating the dependence of bacterial-induced growth promotion on the plant genotype and characterizing plant metabolic adaptations to PGPB. Eighteen Arabidopsis thaliana accessions were inoculated with the PGPB strain Kosakonia radicincitans DSM 16656(T). Colonisation pattern was assessed by enhanced green fluorescent protein (eGFP)-tagged K. radicincitans in three A. thaliana accessions differing in their growth response. Metabolic impact of bacterial colonisation was determined for the best responding accession by profiling distinct classes of plant secondary metabolites and root exudates. Inoculation of 18 A. thaliana accessions resulted in a wide range of growth responses, from repression to enhancement. Testing the bacterial colonisation of three accessions did not reveal a differential pattern. Profiling of plant secondary metabolites showed a differential accumulation of glucosinolates, phenylpropanoids and carotenoids in roots. Analysis of root exudates demonstrated that primary and secondary metabolites were predominantly differentially depleted by bacterial inoculation. The plant genotype controls the bacterial growth promoting traits. Levels of lutein and beta-carotene were elevated in inoculated roots. Supplementing a bacterial suspension with beta-carotene increased bacterial growth, while this was not the case when lutein was applied, indicating that beta-carotene could be a positive regulator of plant growth promotion. KW - Arabidopsis KW - Carotenoids KW - Glucosinolates KW - Plant growth promoting bacteria KW - Phenylpropanoids KW - Root exudates Y1 - 2017 U6 - https://doi.org/10.1007/s11104-017-3371-1 SN - 0032-079X SN - 1573-5036 VL - 419 SP - 557 EP - 573 PB - Springer CY - Dordrecht ER - TY - GEN A1 - Witzel, Katja A1 - Neugart, Susanne A1 - Ruppel, Silke A1 - Schreiner, Monika A1 - Wiesner, Melanie A1 - Baldermann, Susanne T1 - Recent progress in the use of ‘omics technologies in brassicaceous vegetables T2 - Frontiers in plant science N2 - Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub optimal irradiation. This review covers recent applications of omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 429 KW - genomics KW - transcriptomics KW - metabolomics KW - proteomics KW - crop KW - microbiomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406479 ER - TY - JOUR A1 - Witzel, Katja A1 - Neugart, Susanne A1 - Ruppel, Silke A1 - Schreiner, Monika A1 - Wiesner, Melanie A1 - Baldermann, Susanne T1 - Recent progress in the use of 'omics technologies in brassicaceous vegetables JF - Frontiers in plant science N2 - Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub optimal irradiation. This review covers recent applications of omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality. KW - genomics KW - transcriptomics KW - metabolomics KW - proteomics KW - crop KW - microbiomics Y1 - 2015 U6 - https://doi.org/10.3389/fpls.2015.00244 SN - 1664-462X VL - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Wiesner-Reinhold, Melanie A1 - Schreiner, Monika A1 - Baldermann, Susanne A1 - Schwarz, Dietmar A1 - Hanschen, Franziska S. A1 - Kipp, Anna Patricia A1 - Rowan, Daryl D. A1 - Bentley-Hewitt, Kerry L. A1 - McKenzie, Marian J. T1 - Mechanisms of Selenium Enrichment and Measurement in Brassicaceous Vegetables, and Their Application to Human Health JF - Frontiers in plant science N2 - Selenium (Se) is an essential micronutrient for human health. Se deficiency affects hundreds of millions of people worldwide, particularly in developing countries, and there is increasing awareness that suboptimal supply of Se can also negatively affect human health. Selenium enters the diet primarily through the ingestion of plant and animal products. Although, plants are not dependent on Se they take it up from the soil through the sulphur (S) uptake and assimilation pathways. Therefore, geographic differences in the availability of soil Se and agricultural practices have a profound influence on the Se content of many foods, and there are increasing efforts to biofortify crop plants with Se. Plants from the Brassicales are of particular interest as they accumulate and synthesize Se into forms with additional health benefits, such as methylselenocysteine (MeSeCys). The Brassicaceae are also well-known to produce the glucosinolates; S-containing compounds with demonstrated human health value. Furthermore, the recent discovery of the selenoglucosinolates in the Brassicaceae raises questions regarding their potential bioefficacy. In this review we focus on Se uptake and metabolism in the Brassicaceae in the context of human health, particularly cancer prevention and immunity. We investigate the close relationship between Se and S metabolism in this plant family, with particular emphasis on the selenoglucosinolates, and consider the methodologies available for identifying and quantifying further novel Se-containing compounds in plants. Finally, we summarize the research of multiple groups investigating biofortification of the Brassicaceae and discuss which approaches might be most successful for supplying Se deficient populations in the future. KW - Brassica vegetables KW - selenium KW - biofortification KW - glucosinolates KW - human health KW - immune system KW - cancer KW - analytical methods Y1 - 2017 U6 - https://doi.org/10.3389/fpls.2017.01365 SN - 1664-462X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Tu, Vo Anh A1 - Kaga, Atsushi A1 - Gericke, Karl-Heinz A1 - Watanabe, Naoharu A1 - Narumi, Tetsuo A1 - Toda, Mitsuo A1 - Brueckner, Bernhard A1 - Baldermann, Susanne A1 - Mase, Nobuyuki T1 - Synthesis and characterization of quantum dot nanoparticles bound to the plant volatile precursor of Hydroxy-apo-10'-carotenal JF - The journal of organic chemistry N2 - This study is focused on the synthesis and characterization of hydroxy-apo-10'-carotenal/quantum dot (QD) conjugates aiming at the in vivo visualization of beta-ionone, a carotenoid-derived volatile compound known for its important contribution to the flavor and aroma of many fruits, vegetables, and plants. The synthesis of nanoparticles bound to plant volatile precursors was achieved via coupling reaction of the QD to C-27-aldehyde which was prepared from alpha-ionone via 12 steps in 2.4% overall yield. The formation of the QD-conjugate was confirmed by measuring its fluorescence spectrum to observe the occurrence of fluorescence resonance energy transfer. Y1 - 2014 U6 - https://doi.org/10.1021/jo500605c SN - 0022-3263 VL - 79 IS - 15 SP - 6808 EP - 6815 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Silva, Bibiana A1 - Oliveira Costa, Ana Carolina A1 - Tchewonpi, Sorel Sagu A1 - Bönick, Josephine A1 - Huschek, Gerd A1 - Gonzaga, Luciano Valdemiro A1 - Fett, Roseane A1 - Baldermann, Susanne A1 - Rawel, Harshadrai Manilal T1 - Comparative quantification and differentiation of bracatinga (Mimosa scabrella Bentham) honeydew honey proteins using targeted peptide markers identified by high-resolution mass spectrometry JF - Food research international N2 - Honey traceability is an important topic, especially for honeydew honeys, due to the increased incidence of adulteration. This study aimed to establish specific markers to quantify proteins in honey. A proteomics strategy to identify marker peptides from bracatinga honeydew honey was therefore developed. The proteomics approach was based on initial untargeted identification of honey proteins and peptides by LC-ESI-Triple-TOF-MS/MS, which identified the major royal jelly proteins (MRJP) presence. Afterwards, the peptides were selected by the in silico digestion. The marker peptides were quantified by the developed targeted LC-QqQ-MS/MS method, which provided good linearity and specificity, besides recoveries between 92 and 100% to quantify peptides from bracatinga honeydew honey. The uniqueness and high response in mass spectrometry were backed by further complementary protein analysis (SDS-PAGE). The selected marker peptides EALPHVPIFDR (MRJP 1), ILGANVK (MRJP 2), TFVTIER (MRJP 3), QNIDVVAR (MRJP 4), FINNDYNFNEVNFR (MRJP 5) and LLQPYPDWSWTK (MRJP 7), quantified by LC-QqQ-MS/MS, highlighted that the content of QNIDVVAR from MRJP 4 could be used to differentiate bracatinga honeydew honey from floral honeys (p < 0.05) as a potential marker for its authentication. Finally, principal components analysis highlighted the QNIDVVAR content as a good descriptor of the analyzed bracatinga honeydew honey samples. KW - Honeydew honey KW - Major royal jelly proteins KW - Marker peptides KW - High-resolution mass spectrometry KW - Principal component analysis Y1 - 2020 U6 - https://doi.org/10.1016/j.foodres.2020.109991 SN - 0963-9969 SN - 1873-7145 VL - 141 PB - Elsevier CY - New York, NY [u.a.] ER - TY - JOUR A1 - Shi, Jiang A1 - Xie, Dongchao A1 - Qi, Dandan A1 - Peng, Qunhua A1 - Chen, Zongmao A1 - Schreiner, Monika A1 - Lin, Zhi A1 - Baldermann, Susanne T1 - Methyl jasmonate-induced changes of flavor profiles during the processing of Green, Oolong, and Black Tea JF - Frontiers in plant science N2 - Tea aroma is one of the most important factors affecting the character and quality of tea. Here we describe the practical application of methyl jasmonate (MeJA) to improve the aroma quality of teas. The changes of selected metabolites during crucial tea processing steps, namely, withering, fixing and rolling, and fermentation, were analyzed. MeJA treatment of tea leaves (12, 24, 48, and 168 h) greatly promotes the aroma quality of green, oolong, and black tea products when comparing with untreated ones (0 h) and as confirmed by sensory evaluation. MeJA modulates the aroma profiles before, during, and after processing. Benzyl alcohol, benzaldehyde, 2-phenylethyl alcohol, phenylacetaldehyde, and trans-2-hexenal increased 1.07- to 3-fold in MeJA-treated fresh leaves and the first two maintained at a higher level in black tea and the last two in green tea. This correlates with a decrease in aromatic amino acids by more than twofold indicating a direct relation to tryptophan- and phenylalanine-derived volatiles. MeJA-treated oolong tea was characterized by a more pleasant aroma. Especially the terpenoids linalool and oxides, geraniol, and carvenol increased by more than twofold. KW - methyl jasmonate KW - aroma quality KW - volatile compounds KW - amino acids KW - tea processing Y1 - 2019 U6 - https://doi.org/10.3389/fpls.2019.00781 SN - 1664-462X VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Schmiedeskamp, Amy A1 - Schreiner, Monika A1 - Baldermann, Susanne T1 - Impact of cultivar selection and thermal processing by air drying, air frying, and deep frying on the carotenoid content and stability and antioxidant capacity in carrots (Daucus carota L.) JF - Journal of agricultural and food chemistry : a publication of the American Chemical Society N2 - Epidemiological data suggest that consuming diets rich in carotenoids can reduce the risk of developing several non-communicable diseases. Thus, we investigated the extent to which carotenoid contents of foods can be increased by the choice of food matrices with naturally high carotenoid contents and thermal processing methods that maintain their stability. For this purpose, carotenoids of 15 carrot (Daucus carota L.) cultivars of different colors were assessed with UHPLC-DAD-ToF-MS. Additionally, the processing effects of air drying, air frying, and deep frying on carotenoid stability were applied. Cultivar selection accounted for up to 12.9-fold differences in total carotenoid content in differently colored carrots and a 2.2-fold difference between orange carrot cultivars. Air frying for 18 and 25 min and deep frying for 10 min led to a significant decrease in total carotenoid contents. TEAC assay of lipophilic extracts showed a correlation between carotenoid content and antioxidant capacity in untreated carrots. KW - air-dried KW - air-fried KW - deep-fried KW - domestic cooking KW - TEAC KW - color KW - Daucus KW - carota L Y1 - 2022 U6 - https://doi.org/10.1021/acs.jafc.1c05718 SN - 0021-8561 SN - 1520-5118 VL - 70 IS - 5 SP - 1629 EP - 1639 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Raila, Jens A1 - Schweigert, Florian J. A1 - Stanitznig, A. A1 - Lambacher, B. A1 - Franz, S. A1 - Baldermann, Susanne A1 - Wittek, T. T1 - No detectable carotenoid concentrations in serum of llamas and alpacas JF - Journal of animal physiology and animal nutrition N2 - Carotenoids are lipid-soluble pigments and important for a variety of physiological functions. They are major dietary vitamin A precursors and act as lipophilic antioxidants in a variety of tissues and are associated with important health benefits in humans and animals. All animals must acquire carotenoids from their diet, but to our knowledge, there are no studies investigating the intestinal carotenoid absorption and their blood concentrations in New World camelids. The present study aimed to assess the serum concentrations of selected carotenoids in llamas (n=13) and alpacas (n=27). Serum carotenoids as well as retinol (vitamin A) and -tocopherol (vitamin E) were determined by high-performance liquid chromatography coupled with mass spectrometry and these were unable to detect any carotenoids (- and -carotene, - and -cryptoxanthin, lutein, zeaxanthin, lycopene) in the samples. The concentrations of retinol in alpacas (2.89 +/- 1.13mol/l; mean +/- SD) were higher (p=0.024) than those found in llamas (2.05 +/- 0.87mol/l); however, the concentrations of -tocopherol were not significantly (p=0.166) different (llamas: 3.98 +/- 1.83mol/l; alpacas: 4.95 +/- 2.14mol/l). The results show that both llamas and alpacas are not able to absorb intact carotenoids, but efficiently convert provitamin A carotenoids to retinol. KW - New World camelids KW - carotenoids KW - vitamins Y1 - 2017 U6 - https://doi.org/10.1111/jpn.12638 SN - 0931-2439 SN - 1439-0396 VL - 101 SP - 629 EP - 634 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Raffeiner, Margot A1 - Üstün, Suayib A1 - Guerra, Tiziana A1 - Spinti, Daniela A1 - Fitzner, Maria A1 - Sonnewald, Sophia A1 - Baldermann, Susanne A1 - Börnke, Frederik T1 - The Xanthomonas type-III effector XopS stabilizes CaWRKY40a to regulate defense responses and stomatal immunity in pepper (Capsicum annuum) JF - The plant cell N2 - As a critical part of plant immunity, cells that are attacked by pathogens undergo rapid transcriptional reprogramming to minimize virulence. Many bacterial phytopathogens use type III effector (T3E) proteins to interfere with plant defense responses, including this transcriptional reprogramming. Here, we show that Xanthomonas outer protein S (XopS), a T3E of Xanthomonas campestris pv. vesicatoria (Xcv), interacts with and inhibits proteasomal degradation of WRKY40, a transcriptional regulator of defense gene expression. Virus-induced gene silencing of WRKY40 in pepper (Capsicum annuum) enhanced plant tolerance to Xcv infection, indicating that WRKY40 represses immunity. Stabilization of WRKY40 by XopS reduces the expression of its targets, which include salicylic acid-responsive genes and the jasmonic acid signaling repressor JAZ8. Xcv bacteria lacking XopS display significantly reduced virulence when surface inoculated onto susceptible pepper leaves. XopS delivery by Xcv, as well as ectopic expression of XopS in Arabidopsis thaliana or Nicotiana benthamiana, prevented stomatal closure in response to bacteria and biotic elicitors. Silencing WRKY40 in pepper or N. benthamiana abolished XopS's ability to prevent stomatal closure. This suggests that XopS interferes with both preinvasion and apoplastic defense by manipulating WRKY40 stability and downstream gene expression, eventually altering phytohormone crosstalk to promote pathogen proliferation. Y1 - 2022 U6 - https://doi.org/10.1093/plcell/koac032 SN - 1040-4651 SN - 1532-298X VL - 34 IS - 5 SP - 1684 EP - 1708 PB - Oxford Univ. Press CY - Cary ER - TY - JOUR A1 - Olayide, Priscilla A1 - Large, Annabel A1 - Stridh, Linnea A1 - Rabbi, Ismail A1 - Baldermann, Susanne A1 - Stavolone, Livia A1 - Alexandersson, Erik T1 - Gene expression and metabolite profiling of thirteen Nigerian cassava landraces to elucidate starch and carotenoid composition JF - Agronomy N2 - The prevalence of vitamin A deficiency in sub-Saharan Africa necessitates effective approaches to improve provitamin A content of major staple crops. Cassava holds much promise for food security in sub-Saharan Africa, but a negative correlation between beta-carotene, a provitamin A carotenoid, and dry matter content has been reported, which poses a challenge to cassava biofortification by conventional breeding. To identify suitable material for genetic transformation in tissue culture with the overall aim to increase beta-carotene and maintain starch content as well as better understand carotenoid composition, root and leaf tissues from thirteen field-grown cassava landraces were analyzed for agronomic traits, carotenoid, chlorophyll, and starch content. The expression of five genes related to carotenoid biosynthesis were determined in selected landraces. Analysis revealed a weak negative correlation between starch and beta-carotene content, whereas there was a strong positive correlation between root yield and many carotenoids including beta-carotene. Carotenoid synthesis genes were expressed in both white and yellow cassava roots, but phytoene synthase 2 (PSY2), lycopene-epsilon-cyclase (LCY epsilon), and beta-carotenoid hydroxylase (CHY beta) expression were generally higher in yellow roots. This study identified lines with reasonably high content of starch and beta-carotene that could be candidates for biofortification by further breeding or plant biotechnological means. KW - carotenoid biosynthesis KW - ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) KW - provitamin A KW - biofortification Y1 - 2020 U6 - https://doi.org/10.3390/agronomy10030424 SN - 2073-4395 VL - 10 IS - 3 SP - 1 EP - 16 PB - MDPI CY - Basel ER - TY - GEN A1 - Olayide, Priscilla A1 - Large, Annabel A1 - Stridh, Linnea A1 - Rabbi, Ismail A1 - Baldermann, Susanne A1 - Stavolone, Livia A1 - Alexandersson, Erik T1 - Gene expression and metabolite profiling of thirteen Nigerian cassava landraces to elucidate starch and carotenoid composition T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The prevalence of vitamin A deficiency in sub-Saharan Africa necessitates effective approaches to improve provitamin A content of major staple crops. Cassava holds much promise for food security in sub-Saharan Africa, but a negative correlation between beta-carotene, a provitamin A carotenoid, and dry matter content has been reported, which poses a challenge to cassava biofortification by conventional breeding. To identify suitable material for genetic transformation in tissue culture with the overall aim to increase beta-carotene and maintain starch content as well as better understand carotenoid composition, root and leaf tissues from thirteen field-grown cassava landraces were analyzed for agronomic traits, carotenoid, chlorophyll, and starch content. The expression of five genes related to carotenoid biosynthesis were determined in selected landraces. Analysis revealed a weak negative correlation between starch and beta-carotene content, whereas there was a strong positive correlation between root yield and many carotenoids including beta-carotene. Carotenoid synthesis genes were expressed in both white and yellow cassava roots, but phytoene synthase 2 (PSY2), lycopene-epsilon-cyclase (LCY epsilon), and beta-carotenoid hydroxylase (CHY beta) expression were generally higher in yellow roots. This study identified lines with reasonably high content of starch and beta-carotene that could be candidates for biofortification by further breeding or plant biotechnological means. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1415 KW - carotenoid biosynthesis KW - ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) KW - provitamin A KW - biofortification Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-517834 SN - 1866-8372 IS - 3 ER - TY - JOUR A1 - Odongo, Grace Akinyi A1 - Schlotz, Nina A1 - Baldermann, Susanne A1 - Neugart, Susanne A1 - Ngwene, Benard A1 - Schreiner, Monika A1 - Lamy, Evelyn T1 - Effects of Amaranthus cruentus L. on aflatoxin B1- and oxidative stress-induced DNA damage in human liver (HepG2) cells JF - Food bioscience N2 - Amaranth is presently an underutilized crop despite its high content of micronutrients/bioactive phytochemicals and its capacity to thrive in harsh environmental condition. The present study aimed at determining the health benefits of Amaranthus cruentus L. in terms of protection against DNA damage induced by the mycotoxin aflatoxin B1 (AFB1) and oxidative stress using comet assay. The antioxidant potential was further investigated using electron paramagnetic resonance spectroscopy (EPR) and an ARE/Nrf2 reporter gene assay in vitro in a human liver model using the HepG2 cell line. Ethanolic extracts from fresh leaves grown under controlled conditions were used and additionally analyzed for their phytochemical content using liquid chromatography-mass spectrometry (LC-MS). The extracts inhibited both AFB1- and oxidative stress-induced DNA damage in a concentration dependent way with a maximum effect of 57% and 81%, respectively. Oxidative stress triggered using ferrous sulfate was blocked by up to 38% (EPR); the potential to induce antioxidant enzymes using ARE/Nrf2-mediated gene expression was also confirmed. Based on these in vitro findings, further studies on the health-protecting effects of A. cruentus are encouraged to fully explore its health promoting potential and provide the scientific basis for encouraging its cultivation and consumption. KW - African indigenous vegetables KW - Aflatoxin B1 KW - Amaranthaceae KW - Amaranth KW - Aspergillus KW - Cancer prevention Y1 - 2018 U6 - https://doi.org/10.1016/j.fbio.2018.09.006 SN - 2212-4292 SN - 2212-4306 VL - 26 SP - 42 EP - 48 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Odongo, Grace Akinyi A1 - Schlotz, Nina A1 - Baldermann, Susanne A1 - Neugart, Susanne A1 - Huyskens-Keil, Susanne A1 - Ngwene, Benard A1 - Trierweiler, Bernhard A1 - Schreiner, Monika A1 - Lamy, Evelyn T1 - African nightshade (Solanum scabrum Mill.) BT - impact of cultivation and plant processing on its health promoting potential as determined in a human liver cell model T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients and phytochemicals. Anti-genotoxicity against the human liver carcinogen aflatoxin B1 (AFB1) as determined by the comet assay and radical oxygen species (ROS) scavenging capacity of ethanolic and aqueous extracts were investigated in human derived liver (HepG2) cells. ROS scavenging activity was assessed using electron paramagnetic spin resonance and quantification of ARE/Nrf2 mediated gene expression. The cultivation was done under different environmental conditions. The processing included fermentation and cooking; postharvest ultraviolet irradiation (UV-C) treatment was also investigated. Overall, S. scabrum extracts showed strong health promoting potential, the highest potential was observed with the fermented extract, which showed a 60% reduction of AFB1 induced DNA damage and a 38% reduction in FeSO4 induced oxidative stress. The content of total polyphenols, carotenoids and chlorophylls was indeed affected by cultivation and processing. Based on the present in vitro findings consumption of S. scabrum leaves could be further encouraged, preferentially after cooking or fermentation of the plant. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1133 KW - aflatoxin B1 KW - African indigenous vegetables KW - anti-genotoxicity KW - anti-oxidant activity KW - cancer chemoprevention KW - Solanaceae Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459114 SN - 1866-8372 IS - 1133 ER - TY - JOUR A1 - Odongo, Grace Akinyi A1 - Schlotz, Nina A1 - Baldermann, Susanne A1 - Neugart, Susanne A1 - Huyskens-Keil, Susanne A1 - Ngwene, Benard A1 - Trierweiler, Bernhard A1 - Schreiner, Monika A1 - Lamy, Evelyn T1 - African Nightshade (Solanum scabrum Mill.) BT - Impact of Cultivation and Plant Processing on Its Health Promoting Potential as Determined in a Human Liver Cell Model JF - Nutrients N2 - Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients and phytochemicals. Anti-genotoxicity against the human liver carcinogen aflatoxin B1 (AFB(1)) as determined by the comet assay and radical oxygen species (ROS) scavenging capacity of ethanolic and aqueous extracts were investigated in human derived liver (HepG2) cells. ROS scavenging activity was assessed using electron paramagnetic spin resonance and quantification of ARE/Nrf2 mediated gene expression. The cultivation was done under different environmental conditions. The processing included fermentation and cooking; postharvest ultraviolet irradiation (UV-C) treatment was also investigated. Overall, S. scabrum extracts showed strong health promoting potential, the highest potential was observed with the fermented extract, which showed a 60% reduction of AFB(1) induced DNA damage and a 38% reduction in FeSO4 induced oxidative stress. The content of total polyphenols, carotenoids and chlorophylls was indeed affected by cultivation and processing. Based on the present in vitro findings consumption of S. scabrum leaves could be further encouraged, preferentially after cooking or fermentation of the plant. KW - aflatoxin B1 KW - African indigenous vegetables KW - anti-genotoxicity KW - anti-oxidant activity KW - cancer chemoprevention KW - Solanaceae Y1 - 2018 U6 - https://doi.org/10.3390/nu10101532 SN - 2072-6643 VL - 10 IS - 10 PB - MDPI CY - Basel ER -