TY - JOUR A1 - Tang, Alan T. A1 - Sullivan, Katie Rose A1 - Hong, Courtney C. A1 - Goddard, Lauren M. A1 - Mahadevan, Aparna A1 - Ren, Aileen A1 - Pardo, Heidy A1 - Peiper, Amy A1 - Griffin, Erin A1 - Tanes, Ceylan A1 - Mattei, Lisa M. A1 - Yang, Jisheng A1 - Li, Li A1 - Mericko-Ishizuka, Patricia A1 - Shen, Le A1 - Hobson, Nicholas A1 - Girard, Romuald A1 - Lightle, Rhonda A1 - Moore, Thomas A1 - Shenkar, Robert A1 - Polster, Sean P. A1 - Roedel, Claudia Jasmin A1 - Li, Ning A1 - Zhu, Qin A1 - Whitehead, Kevin J. A1 - Zheng, Xiangjian A1 - Akers, Amy A1 - Morrison, Leslie A1 - Kim, Helen A1 - Bittinger, Kyle A1 - Lengner, Christopher J. A1 - Schwaninger, Markus A1 - Velcich, Anna A1 - Augenlicht, Leonard A1 - Abdelilah-Seyfried, Salim A1 - Min, Wang A1 - Marchuk, Douglas A. A1 - Awad, Issam A. A1 - Kahn, Mark L. T1 - Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation JF - Science Translational Medicine N2 - Cerebral cavernous malformation (CCM) is a genetic, cerebrovascular disease. Familial CCM is caused by genetic mutations in KRIT1, CCM2, or PDCD10. Disease onset is earlier and more severe in individuals with PDCD10 mutations. Recent studies have shown that lesions arise from excess mitogen-activated protein kinase kinase kinase 3 (MEKK3) signaling downstream of Toll-like receptor 4 (TLR4) stimulation by lipopolysaccharide derived from the gut microbiome. These findings suggest a gut-brain CCM disease axis but fail to define it or explain the poor prognosis of patients with PDCD10 mutations. Here, we demonstrate that the gut barrier is a primary determinant of CCM disease course, independent of microbiome configuration, that explains the increased severity of CCM disease associated with PDCD10 deficiency. Chemical disruption of the gut barrier with dextran sulfate sodium augments CCM formation in a mouse model, as does genetic loss of Pdcd10, but not Krit1, in gut epithelial cells. Loss of gut epithelial Pdcd10 results in disruption of the colonic mucosal barrier. Accordingly, loss of Mucin-2 or exposure to dietary emulsifiers that reduce the mucus barrier increases CCM burden analogous to loss of Pdcd10 in the gut epithelium. Last, we show that treatment with dexamethasone potently inhibits CCM formation in mice because of the combined effect of action at both brain endothelial cells and gut epithelial cells. These studies define a gut-brain disease axis in an experimental model of CCM in which a single gene is required for two critical components: gut epithelial function and brain endothelial signaling. Y1 - 2019 U6 - https://doi.org/10.1126/scitranslmed.aaw3521 SN - 1946-6234 SN - 1946-6242 VL - 11 IS - 520 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Rödel, Claudia Jasmin A1 - Otten, Cecile A1 - Donat, Stefan A1 - Lourenço, Marta Sofia Rocha A1 - Fischer, Dorothea A1 - Kuropka, Benno A1 - Paolini, Alessio A1 - Freund, Christian A1 - Abdelilah-Seyfried, Salim T1 - Blood Flow Suppresses Vascular Anomalies in a Zebrafish Model of Cerebral Cavernous Malformations JF - Circulation Research N2 - RATIONALE: Pathological biomechanical signaling induces vascular anomalies including cerebral cavernous malformations (CCM), which are caused by a clonal loss of CCM1/KRIT1 (Krev interaction trapped protein 1), CCM2/MGC4607, or CCM3/PDCD10. Why patients typically experience lesions only in lowly perfused venous capillaries of the cerebrovasculature is completely unknown. OBJECTIVE: In contrast, animal models with a complete loss of CCM proteins lack a functional heart and blood flow and exhibit vascular anomalies within major blood vessels as well. This finding raises the possibility that hemodynamics may play a role in the context of this vascular pathology. METHODS AND RESULTS: Here, we used a genetic approach to restore cardiac function and blood flow in a zebrafish model of CCM1. We find that blood flow prevents cardiovascular anomalies including a hyperplastic expansion within a large Ccm1-deficient vascular bed, the lateral dorsal aorta. CONCLUSIONS: This study identifies blood flow as an important physiological factor that is protective in the cause of this devastating vascular pathology. KW - animal models KW - cerebral cavernous malformations KW - endothelial cell KW - hemodynamics KW - zebrafish Y1 - 2019 U6 - https://doi.org/10.1161/CIRCRESAHA.119.315076 SN - 0009-7330 SN - 1524-4571 VL - 125 IS - 10 SP - E43 EP - E54 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Rödel, Claudia Jasmin A1 - Abdelilah-Seyfried, Salim T1 - A zebrafish toolbox for biomechanical signaling in cardiovascular development and disease JF - Current opinion in hematology N2 - Purpose of review The zebrafish embryo has emerged as a powerful model organism to investigate the mechanisms by which biophysical forces regulate vascular and cardiac cell biology during development and disease. A versatile arsenal of methods and tools is available to manipulate and analyze biomechanical signaling. This review aims to provide an overview of the experimental strategies and tools that have been utilized to study biomechanical signaling in cardiovascular developmental processes and different vascular disease models in the zebrafish embryo. Within the scope of this review, we focus on work published during the last two years. Recent findings Genetic and pharmacological tools for the manipulation of cardiac function allow alterations of hemodynamic flow patterns in the zebrafish embryo and various types of transgenic lines are available to report endothelial cell responses to biophysical forces. These tools have not only revealed the impact of biophysical forces on cardiovascular development but also helped to establish more accurate models for cardiovascular diseases including cerebral cavernous malformations, hereditary hemorrhagic telangiectasias, arteriovenous malformations, and lymphangiopathies. Summary The zebrafish embryo is a valuable vertebrate model in which in-vivo manipulations of biophysical forces due to cardiac contractility and blood flow can be performed. These analyses give important insights into biomechanical signaling pathways that control endothelial and endocardial cell behaviors. The technical advances using this vertebrate model will advance our understanding of the impact of biophysical forces in cardiovascular pathologies. KW - angiogenesis KW - cardiovascular system KW - Danio rerio (zebrafish) KW - genetic KW - tools KW - mechanobiology Y1 - 2021 U6 - https://doi.org/10.1097/MOH.0000000000000648 SN - 1065-6251 SN - 1531-7048 VL - 28 IS - 3 SP - 198 EP - 207 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Renz, Marc A1 - Otten, Cecile A1 - Faurobert, Eva A1 - Rudolph, Franziska A1 - Zhu, Yuan A1 - Boulday, Gwenola A1 - Duchene, Johan A1 - Mickoleit, Michaela A1 - Dietrich, Ann-Christin A1 - Ramspacher, Caroline A1 - Steed, Emily A1 - Manet-Dupe, Sandra A1 - Benz, Alexander A1 - Hassel, David A1 - Vermot, Julien A1 - Huisken, Jan A1 - Tournier-Lasserve, Elisabeth A1 - Felbor, Ute A1 - Sure, Ulrich A1 - Albiges-Rizo, Corinne A1 - Abdelilah-Seyfried, Salim T1 - Regulation of beta 1 Integrin-Klf2-Mediated angiogenesis by CCM proteins JF - Developmental cell N2 - Mechanotransduction pathways are activated in response to biophysical stimuli during the development or homeostasis of organs and tissues. In zebrafish, the blood-flow-sensitive transcription factor Klf2a promotes VEGF-dependent angiogenesis. However, the means by which the Klf2a mechanotransduction pathway is regulated to prevent continuous angiogenesis remain unknown. Here we report that the upregulation of klf2 mRNA causes enhanced egfl7 expression and angiogenesis signaling, which underlies cardiovascular defects associated with the loss of cerebral cavernous malformation (CCM) proteins in the zebrafish embryo. Using CCM-protein-depleted human umbilical vein endothelial cells, we show that the misexpression of KLF2 mRNA requires the extracellular matrix-binding receptor beta 1 integrin and occurs in the absence of blood flow. Downregulation of beta 1 integrin rescues ccm mutant cardiovascular malformations in zebrafish. Our work reveals a beta 1 integrin-Klf2-Egfl7-signaling pathway that is tightly regulated by CCM proteins. This regulation prevents angiogenic overgrowth and ensures the quiescence of endothelial cells. Y1 - 2015 U6 - https://doi.org/10.1016/j.devcel.2014.12.016 SN - 1534-5807 SN - 1878-1551 VL - 32 IS - 2 SP - 181 EP - 190 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Paolini, Alessio A1 - Abdelilah-Seyfried, Salim T1 - The mechanobiology of zebrafish cardiac valve leaflet formation JF - Current opinion in cell biology : review articles, recommended reading, bibliography of the world literature N2 - Over a lifetime, rhythmic contractions of the heart provide a continuous flow of blood throughout the body. An essential morphogenetic process during cardiac development which ensures unidirectional blood flow is the formation of cardiac valves. These structures are largely composed of extracellular matrix and of endocardial cells, a specialized population of endothelial cells that line the interior of the heart and that are subjected to changing hemodynamic forces. Recent studies have significantly expanded our understanding of this morphogenetic process. They highlight the importance of the mechanobiology of cardiac valve formation and show how biophysical forces due to blood flow drive biochemical and electrical signaling required for the differentiation of cells to produce cardiac valves. Y1 - 2018 U6 - https://doi.org/10.1016/j.ceb.2018.05.007 SN - 0955-0674 SN - 1879-0410 VL - 55 SP - 52 EP - 58 PB - Elsevier CY - London ER - TY - JOUR A1 - Otten, Cecile A1 - Knox, Jessica A1 - Boulday, Gwenola A1 - Eymery, Mathias A1 - Haniszewski, Marta A1 - Neuenschwander, Martin A1 - Radetzki, Silke A1 - Vogt, Ingo A1 - Haehn, Kristina A1 - De Luca, Coralie A1 - Cardoso, Cecile A1 - Hamad, Sabri A1 - Igual Gil, Carla A1 - Roy, Peter A1 - Albiges-Rizo, Corinne A1 - Faurobert, Eva A1 - von Kries, Jens P. A1 - Campillos, Monica A1 - Tournier-Lasserve, Elisabeth A1 - Derry, William Brent A1 - Abdelilah-Seyfried, Salim T1 - Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations JF - EMBO molecular medicine N2 - Cerebral cavernous malformations (CCMs) are vascular lesions in the central nervous system causing strokes and seizures which currently can only be treated through neurosurgery. The disease arises through changes in the regulatory networks of endothelial cells that must be comprehensively understood to develop alternative, non-invasive pharmacological therapies. Here, we present the results of several unbiased small-molecule suppression screens in which we applied a total of 5,268 unique substances to CCM mutant worm, zebrafish, mouse, or human endothelial cells. We used a systems biology-based target prediction tool to integrate the results with the whole-transcriptome profile of zebrafish CCM2 mutants, revealing signaling pathways relevant to the disease and potential targets for small-molecule-based therapies. We found indirubin-3-monoxime to alleviate the lesion burden in murine preclinical models of CCM2 and CCM3 and suppress the loss-of-CCM phenotypes in human endothelial cells. Our multi-organism-based approach reveals new components of the CCM regulatory network and foreshadows novel small-molecule-based therapeutic applications for suppressing this devastating disease in patients. KW - angiogenesis KW - CCM KW - ERK5 KW - indirubin-3-monoxime KW - KLF2 Y1 - 2018 U6 - https://doi.org/10.15252/emmm.201809155 SN - 1757-4676 SN - 1757-4684 VL - 10 IS - 10 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Olmer, Ruth A1 - Engels, Lena A1 - Usman, Abdulai A1 - Menke, Sandra A1 - Malik, Muhammad Nasir Hayat A1 - Pessler, Frank A1 - Göhring, Gudrun A1 - Bornhorst, Dorothee A1 - Bolten, Svenja A1 - Abdelilah-Seyfried, Salim A1 - Scheper, Thomas A1 - Kempf, Henning A1 - Zweigerdt, Robert A1 - Martin, Ulrich T1 - Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Endothelial cells (ECs) are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor) cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs) represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1182 KW - virus infection KW - progenitor cells KW - in vitro KW - telomere dysfunction KW - cord blood KW - cardiomyogenic differentiation KW - angiogenesis KW - efficient KW - aberrations KW - expression Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427095 SN - 1866-8372 IS - 5 ER - TY - JOUR A1 - Olmer, Ruth A1 - Engels, Lena A1 - Usman, Abdulai A1 - Menke, Sandra A1 - Malik, Muhammad Nasir Hayat A1 - Pessler, Frank A1 - Goehring, Gudrun A1 - Bornhorst, Dorothee A1 - Bolten, Svenja A1 - Abdelilah-Seyfried, Salim A1 - Scheper, Thomas A1 - Kempf, Henning A1 - Zweigerdt, Robert A1 - Martin, Ulrich T1 - Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture JF - Stem Cell Reports N2 - Endothelial cells (ECs) are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor) cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs) represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability. KW - virus infection KW - progenitor cells KW - in vitro KW - telomere dysfunction KW - cord blood KW - cardiomyogenic differentiation KW - angiogenesis KW - efficient KW - aberrations KW - expression Y1 - 2017 U6 - https://doi.org/10.1016/j.stemcr.2018.03.017 SN - 2213-6711 VL - 10 IS - 5 PB - Springer CY - New York ER - TY - GEN A1 - Münch, Juliane A1 - Abdelilah-Seyfried, Salim T1 - Sensing and Responding of Cardiomyocytes to Changes of Tissue Stiffness in the Diseased Heart T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Cardiomyocytes are permanently exposed to mechanical stimulation due to cardiac contractility. Passive myocardial stiffness is a crucial factor, which defines the physiological ventricular compliance and volume of diastolic filling with blood. Heart diseases often present with increased myocardial stiffness, for instance when fibrotic changes modify the composition of the cardiac extracellular matrix (ECM). Consequently, the ventricle loses its compliance, and the diastolic blood volume is reduced. Recent advances in the field of cardiac mechanobiology revealed that disease-related environmental stiffness changes cause severe alterations in cardiomyocyte cellular behavior and function. Here, we review the molecular mechanotransduction pathways that enable cardiomyocytes to sense stiffness changes and translate those into an altered gene expression. We will also summarize current knowledge about when myocardial stiffness increases in the diseased heart. Sophisticated in vitro studies revealed functional changes, when cardiomyocytes faced a stiffer matrix. Finally, we will highlight recent studies that described modulations of cardiac stiffness and thus myocardial performance in vivo. Mechanobiology research is just at the cusp of systematic investigations related to mechanical changes in the diseased heart but what is known already makes way for new therapeutic approaches in regenerative biology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1234 KW - mechanobiology KW - tissue stiffness KW - cardiomyocyte KW - heart regeneration KW - titin KW - collagen KW - agrin KW - extracellular matrix Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-545805 SN - 1866-8372 ER - TY - JOUR A1 - Münch, Juliane A1 - Abdelilah-Seyfried, Salim T1 - Sensing and responding of cardiomyocytes to changes of tissue stiffness in the diseased heart JF - Frontiers in cell developmental biology N2 - Cardiomyocytes are permanently exposed to mechanical stimulation due to cardiac contractility. Passive myocardial stiffness is a crucial factor, which defines the physiological ventricular compliance and volume of diastolic filling with blood. Heart diseases often present with increased myocardial stiffness, for instance when fibrotic changes modify the composition of the cardiac extracellular matrix (ECM). Consequently, the ventricle loses its compliance, and the diastolic blood volume is reduced. Recent advances in the field of cardiac mechanobiology revealed that disease-related environmental stiffness changes cause severe alterations in cardiomyocyte cellular behavior and function. Here, we review the molecular mechanotransduction pathways that enable cardiomyocytes to sense stiffness changes and translate those into an altered gene expression. We will also summarize current knowledge about when myocardial stiffness increases in the diseased heart. Sophisticated in vitro studies revealed functional changes, when cardiomyocytes faced a stiffer matrix. Finally, we will highlight recent studies that described modulations of cardiac stiffness and thus myocardial performance in vivo. Mechanobiology research is just at the cusp of systematic investigations related to mechanical changes in the diseased heart but what is known already makes way for new therapeutic approaches in regenerative biology. KW - mechanobiology KW - tissue stiffness KW - cardiomyocyte KW - heart regeneration KW - titin KW - collagen KW - agrin KW - extracellular matrix Y1 - 2020 U6 - https://doi.org/10.3389/fcell.2021.642840 SN - 2296-634X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Merks, Anne Margarete A1 - Swinarski, Marie A1 - Meyer, Alexander Matthias A1 - Müller, Nicola Victoria A1 - Özcan, Ismail A1 - Donat, Stefan A1 - Burger, Alexa A1 - Gilbert, Stephen A1 - Mosimann, Christian A1 - Abdelilah-Seyfried, Salim A1 - Panáková, Daniela T1 - Planar cell polarity signalling coordinates heart tube remodelling through tissue-scale polarisation of actomyosin activity T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Development of a multiple-chambered heart from the linear heart tube is inherently linked to cardiac looping. Although many molecular factors regulating the process of cardiac chamber ballooning have been identified, the cellular mechanisms underlying the chamber formation remain unclear. Here, we demonstrate that cardiac chambers remodel by cell neighbour exchange of cardiomyocytes guided by the planar cell polarity (PCP) pathway triggered by two non-canonical Wnt ligands, Wnt5b and Wnt11. We find that PCP signalling coordinates the localisation of actomyosin activity, and thus the efficiency of cell neighbour exchange. On a tissue-scale, PCP signalling planar-polarises tissue tension by restricting the actomyosin contractility to the apical membranes of outflow tract cells. The tissue-scale polarisation of actomyosin contractility is required for cardiac looping that occurs concurrently with chamber ballooning. Taken together, our data reveal that instructive PCP signals couple cardiac chamber expansion with cardiac looping through the organ-scale polarisation of actomyosin-based tissue tension. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 849 KW - convergent extension KW - branching morphogenesis KW - actin cytoskeleton KW - zebrafish heart KW - mouse heart KW - drosophila KW - cadherin KW - gene KW - differentiation KW - proliferation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427026 SN - 1866-8372 IS - 849 ER - TY - JOUR A1 - Merks, Anne Margarete A1 - Swinarski, Marie A1 - Meyer, Alexander Matthias A1 - Müller, Nicola Victoria A1 - Özcan, Ismail A1 - Donat, Stefan A1 - Burger, Alexa A1 - Gilbert, Stephen A1 - Mosimann, Christian A1 - Abdelilah-Seyfried, Salim A1 - Panakova, Daniela T1 - Planar cell polarity signalling coordinates heart tube remodelling through tissue-scale polarisation of actomyosin activity JF - Nature Communications N2 - Development of a multiple-chambered heart from the linear heart tube is inherently linked to cardiac looping. Although many molecular factors regulating the process of cardiac chamber ballooning have been identified, the cellular mechanisms underlying the chamber formation remain unclear. Here, we demonstrate that cardiac chambers remodel by cell neighbour exchange of cardiomyocytes guided by the planar cell polarity (PCP) pathway triggered by two non-canonical Wnt ligands, Wnt5b and Wnt11. We find that PCP signalling coordinates the localisation of actomyosin activity, and thus the efficiency of cell neighbour exchange. On a tissue-scale, PCP signalling planar-polarises tissue tension by restricting the actomyosin contractility to the apical membranes of outflow tract cells. The tissue-scale polarisation of actomyosin contractility is required for cardiac looping that occurs concurrently with chamber ballooning. Taken together, our data reveal that instructive PCP signals couple cardiac chamber expansion with cardiac looping through the organ-scale polarisation of actomyosin-based tissue tension. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-04566-1 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Lombardo, Verónica A. A1 - Heise, Melina A1 - Moghtadaei, Motahareh A1 - Bornhorst, Dorothee A1 - Männer, Jörg A1 - Abdelilah-Seyfried, Salim T1 - Morphogenetic control of zebrafish cardiac looping by Bmp signaling JF - Development : Company of Biologists N2 - Cardiac looping is an essential and highly conserved morphogenetic process that places the different regions of the developing vertebrate heart tube into proximity of their final topographical positions. High-resolution 4D live imaging of mosaically labelled cardiomyocytes reveals distinct cardiomyocyte behaviors that contribute to the deformation of the entire heart tube. Cardiomyocytes acquire a conical cell shape, which is most pronounced at the superior wall of the atrioventricular canal and contributes to S-shaped bending. Torsional deformation close to the outflow tract contributes to a torque-like winding of the entire heart tube between its two poles. Anisotropic growth of cardiomyocytes based on their positions reinforces S-shaping of the heart. During cardiac looping, bone morphogenetic protein pathway signaling is strongest at the future superior wall of the atrioventricular canal. Upon pharmacological or genetic inhibition of bone morphogenetic protein signaling, myocardial cells at the superior wall of the atrioventricular canal maintain cuboidal cell shapes and S-shaped bending is impaired. This description of cellular rearrangements and cardiac looping regulation may also be relevant for understanding the etiology of human congenital heart defects. KW - BMP KW - Wnt KW - Cardiac looping KW - Hemodynamics KW - Zebrafish Y1 - 2019 U6 - https://doi.org/10.1242/dev.180091 SN - 0950-1991 SN - 1477-9129 VL - 146 IS - 22 PB - The Company of Biologists Ltd CY - Cambridge ER - TY - JOUR A1 - Lombardo, Veronica A. A1 - Otten, Cecile A1 - Abdelilah-Seyfried, Salim T1 - Large-scale Zebrafish Embryonic Heart Dissection for Transcriptional Analysis JF - Journal of visualized experiments N2 - The zebrafish embryonic heart is composed of only a few hundred cells, representing only a small fraction of the entire embryo. Therefore, to prevent the cardiac transcriptome from being masked by the global embryonic transcriptome, it is necessary to collect sufficient numbers of hearts for further analyses. Furthermore, as zebrafish cardiac development proceeds rapidly, heart collection and RNA extraction methods need to be quick in order to ensure homogeneity of the samples. Here, we present a rapid manual dissection protocol for collecting functional/beating hearts from zebrafish embryos. This is an essential prerequisite for subsequent cardiac-specific RNA extraction to determine cardiac-specific gene expression levels by transcriptome analyses, such as quantitative real-time polymerase chain reaction (RT-qPCR). The method is based on differential adhesive properties of the zebrafish embryonic heart compared with other tissues; this allows for the rapid physical separation of cardiac from extracardiac tissue by a combination of fluidic shear force disruption, stepwise filtration and manual collection of transgenic fluorescently labeled hearts. KW - Developmental Biology KW - Issue 95 KW - zebrafish KW - embryo KW - heart KW - dissection KW - RNA KW - RT-qPCR Y1 - 2015 U6 - https://doi.org/10.3791/52087 SN - 1940-087X IS - 95 PB - JoVE CY - Cambridge ER - TY - JOUR A1 - Lisowska, Justyna A1 - Rödel, Claudia Jasmin A1 - Manet, Sandra A1 - Miroshnikova, Yekaterina A. A1 - Boyault, Cyril A1 - Planus, Emmanuelle A1 - De Mets, Richard A1 - Lee, Hsiao-Hui A1 - Destaing, Olivier A1 - Mertani, Hichem A1 - Boulday, Gwenola A1 - Tournier-Lasserve, Elisabeth A1 - Balland, Martial A1 - Abdelilah-Seyfried, Salim A1 - Albiges-Rizo, Corinne A1 - Faurobert, Eva T1 - The CCM1-CCM2 complex controls complementary functions of ROCK1 and ROCK2 that are required for endothelial integrity JF - Journal of cell science N2 - Endothelial integrity relies on a mechanical crosstalk between intercellular and cell-matrix interactions. This crosstalk is compromised in hemorrhagic vascular lesions of patients carrying loss-of-function mutations in cerebral cavernous malformation (CCM) genes. RhoA/ROCK-dependent cytoskeletal remodeling is central to the disease, as it causes unbalanced cell adhesion towards increased cell-extracellular matrix adhesions and destabilized cell-cell junctions. This study reveals that CCM proteins directly orchestrate ROCK1 and ROCK2 complementary roles on the mechanics of the endothelium. CCM proteins act as a scaffold, promoting ROCK2 interactions with VE-cadherin and limiting ROCK1 kinase activity. Loss of CCM1 (also known as KRIT1) produces excessive ROCK1-dependent actin stress fibers and destabilizes intercellular junctions. Silencing of ROCK1 but not ROCK2 restores the adhesive and mechanical homeostasis of CCM1 and CCM2-depleted endothelial monolayers, and rescues the cardiovascular defects of ccm1 mutant zebrafish embryos. Conversely, knocking down Rock2 but not Rock1 in wild-type zebrafish embryos generates defects reminiscent of the ccm1 mutant phenotypes. Our study uncovers the role of the CCM1-CCM2 complex in controlling ROCK1 and ROCK2 to preserve endothelial integrity and drive heart morphogenesis. Moreover, it solely identifies the ROCK1 isoform as a potential therapeutic target for the CCM disease. KW - CCM KW - ROCK KW - Endothelial integrity KW - Mechanotransduction Y1 - 2018 U6 - https://doi.org/10.1242/jcs.216093 SN - 0021-9533 SN - 1477-9137 VL - 131 IS - 15 PB - Company biologists LTD CY - Cambridge ER - TY - JOUR A1 - Haack, Timm A1 - Abdelilah-Seyfried, Salim T1 - The force within: endocardial development, mechanotransduction and signalling during cardiac morphogenesis JF - Development : Company of Biologists N2 - Endocardial cells are cardiac endothelial cells that line the interior of the heart tube. Historically, their contribution to cardiac development has mainly been considered from a morphological perspective. However, recent studies have begun to define novel instructive roles of the endocardium, as a sensor and signal transducer of biophysical forces induced by blood flow, and as an angiocrine signalling centre that is involved in myocardial cellular morphogenesis, regeneration and reprogramming. In this Review, we discuss how the endocardium develops, how endocardial-myocardial interactions influence the developing embryonic heart, and how the dysregulation of blood flowresponsive endocardial signalling can result in pathophysiological changes. KW - Endocardium KW - Cardiac development KW - Hemodynamics KW - Bmp KW - Kruppel-like factor 2 KW - Vegf KW - Mechanotransduction KW - Zebrafish KW - Mouse Y1 - 2016 U6 - https://doi.org/10.1242/dev.131425 SN - 0950-1991 SN - 1477-9129 VL - 143 SP - 373 EP - 386 PB - Company of Biologists Limited CY - Cambridge ER - TY - JOUR A1 - Donat, Stefan A1 - Lourenco, Marta Sofia Rocha A1 - Paolini, Alessio A1 - Otten, Cecile A1 - Renz, Marc A1 - Abdelilah-Seyfried, Salim T1 - Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis JF - eLife N2 - Endothelial cells respond to different levels of fluid shear stress through adaptations of their mechanosensitivity. Currently, we lack a good understanding of how this contributes to sculpting of the cardiovascular system. Cerebral cavernous malformation (CCM) is an inherited vascular disease that occurs when a second somatic mutation causes a loss of CCM1/KRIT1, CCM2, or CCM3 proteins. Here, we demonstrate that zebrafish Krit1 regulates the formation of cardiac valves. Expression of heg1, which encodes a binding partner of Krit1, is positively regulated by blood-flow. In turn, Heg1 stabilizes levels of Krit1 protein, and both Heg1 and Krit1 dampen expression levels of klf2a, a major mechanosensitive gene. Conversely, loss of Krit1 results in increased expression of klf2a and notch1b throughout the endocardium and prevents cardiac valve leaflet formation. Hence, the correct balance of blood-flow-dependent induction and Krit1 protein mediated repression of klf2a and notch1b ultimately shapes cardiac valve leaflet morphology. Y1 - 2018 U6 - https://doi.org/10.7554/eLife.28939 SN - 2050-084X VL - 7 PB - eLife Sciences Publications CY - Cambridge ER - TY - JOUR A1 - Dietrich, Ann-Christin A1 - Lombardo, Veronica A. A1 - Abdelilah-Seyfried, Salim T1 - Blood flow and Bmp signaling control endocardial chamber morphogenesis JF - Developmental cell N2 - During heart development, the onset of heartbeat and blood flow coincides with a ballooning of the cardiac chambers. Here, we have used the zebrafish as a vertebrate model to characterize chamber ballooning morphogenesis of the endocardium, a specialized population of endothelial cells that line the interior of the heart. By combining functional manipulations, fate mapping studies, and high-resolution imaging, we show that endocardial growth occurs without an influx of external cells. Instead, endocardial cell proliferation is regulated, both by blood flow and by Bmp signaling, in a manner independent of vascular endothelial growth factor (VEGF) signaling. Similar to myocardial cells, endocardial cells obtain distinct chamber-specific and inner- versus outer-curvature-specific surface area sizes. We find that the hemodynamic-sensitive transcription factor Klf2a is involved in regulating endocardial cell morphology. These findings establish the endocardium as the flow-sensitive tissue in the heart with a key role in adapting chamber growth in response to the mechanical stimulus of blood flow. Y1 - 2014 U6 - https://doi.org/10.1016/j.devcel.2014.06.020 SN - 1534-5807 SN - 1878-1551 VL - 30 IS - 4 SP - 367 EP - 377 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Demal, Till Joscha A1 - Heise, Melina A1 - Reiz, Benedikt A1 - Dogra, Deepika A1 - Braenne, Ingrid A1 - Reichenspurner, Hermann A1 - Männer, Jörg A1 - Aherrahrou, Zouhair A1 - Schunkert, Heribert A1 - Erdmann, Jeanette A1 - Abdelilah-Seyfried, Salim T1 - A familial congenital heart disease with a possible multigenic origin involving a mutation in BMPR1A JF - Scientific reports N2 - The genetics of many congenital heart diseases (CHDs) can only unsatisfactorily be explained by known chromosomal or Mendelian syndromes. Here, we present sequencing data of a family with a potentially multigenic origin of CHD. Twelve of nineteen family members carry a familial mutation [NM_004329.2:c.1328 G > A (p.R443H)] which encodes a predicted deleterious variant of BMPR1A. This mutation co-segregates with a linkage region on chromosome 1 that associates with the emergence of severe CHDs including Ebstein’s anomaly, atrioventricular septal defect, and others. We show that the continuous overexpression of the zebrafish homologous mutation bmpr1aap.R438H within endocardium causes a reduced AV valve area, a downregulation of Wnt/ß-catenin signalling at the AV canal, and growth of additional tissue mass in adult zebrafish hearts. This finding opens the possibility of testing genetic interactions between BMPR1A and other candidate genes within linkage region 1 which may provide a first step towards unravelling more complex genetic patterns in cardiovascular disease aetiology. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-39648-7 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - de Vinuesa, Amaya Garcia A1 - Abdelilah-Seyfried, Salim A1 - Knaus, Petra A1 - Zwijsen, An A1 - Bailly, Sabine T1 - BMP signaling in vascular biology and dysfunction JF - New journal of physics : the open-access journal for physics N2 - The vascular system is critical for developmental growth, tissue homeostasis and repair but also for tumor development. Bone morphogenetic protein (BMP) signaling has recently emerged as a fundamental pathway of the endothelium by regulating cardiovascular and lymphatic development and by being causative for several vascular dysfunctions. Two vascular disorders have been directly linked to impaired BMP signaling: pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia. Endothelial BMP signaling critically depends on the cellular context, which includes among others vascular heterogeneity, exposure to flow, and the intertwining with other signaling cascades (Notch, WNT, Hippo and hypoxia). The purpose of this review is to highlight the most recent findings illustrating the clear need for reconsidering the role of BMPs in vascular biology. (C) 2015 Elsevier Ltd. All rights reserved. KW - Bone morphogenetic proteins (BMP) KW - Signaling KW - Vasculature KW - Development KW - Disease Y1 - 2016 U6 - https://doi.org/10.1016/j.cytogfr.2015.12.005 SN - 1359-6101 SN - 1879-0305 VL - 27 SP - 65 EP - 79 PB - Elsevier CY - Oxford ER -