TY - JOUR A1 - Puhlmann, Dirk A1 - Henkel, Carsten A1 - Heuer, Axel A1 - Pieplow, Gregor A1 - Menzel, Ralf T1 - Characterization of a remote optical element with bi-photons JF - Physica scripta : an international journal for experimental and theoretical physics N2 - We present a simple setup that exploits the interference of entangled photon pairs. 'Signal' photons are sent through a Mach–Zehnder-like interferometer, while 'idlers' are detected in a variable polarization state. Two-photon interference (in coincidence detection) is observed with very high contrast and for significant time delays between signal and idler detection events. This is explained by quantum erasure of the polarization tag and a delayed choice protocol involving a non-local virtual polarizer. The phase of the two-photon fringes is scanned by varying the path length in the signal beam or by rotating a birefringent crystal in the idler beam. We exploit this to characterize one beam splitter of the signal photon interferometer (reflection and transmission amplitudes including losses), using only information about coincidences and control parameters in the idler path. This is possible because our bi-photon state saturates the Greenberger–Yelin–Englert inequality between contrast and predictability. KW - quantum optics KW - quantum eraser KW - entanglement KW - bi-photons Y1 - 2016 U6 - https://doi.org/10.1088/0031-8949/91/2/023006 SN - 0031-8949 SN - 1402-4896 VL - 91 SP - 113 EP - 114 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Henkel, Carsten T1 - Heat transfer and entanglement BT - non-equilibrium correlation spectra of two quantum oscillators JF - Annalen der Physik N2 - The non-equilibrium state of two oscillators with a mutual interaction and coupled to separate heat baths is discussed. Bosonic baths are considered, and an exact spectral representation for the elements of the covariance matrix is provided analytically. A wide class of spectral densities for the relevant bath modes is allowed for. The validity of the fluctuation-dissipation relation is established for global equilibrium (both baths at the same temperature) in the stationary state. Spectral measures of entanglement are suggested by comparing to the equilibrium spectrum of zero-point fluctuations. No rotating-wave approximation is applied, and anomalous heat transport from cold to hot bath, as reported in earlier work, is demonstrated not to occur. KW - entanglement KW - heat transfer KW - non-equilibrium steady state KW - master KW - equation KW - quantum thermodynamics Y1 - 2021 U6 - https://doi.org/10.1002/andp.202100089 SN - 0003-3804 SN - 1521-3889 VL - 533 IS - 10 PB - Wiley-VCH CY - Weinheim ER -