TY - JOUR A1 - Martins, Marina Camara Mattos A1 - Hejazi, Mahdi A1 - Fettke, Jörg A1 - Steup, Martin A1 - Feil, Regina A1 - Krause, Ursula A1 - Arrivault, Stephanie A1 - Vosloh, Daniel A1 - Figueroa, Carlos Maria A1 - Ivakov, Alexander A1 - Yadav, Umesh Prasad A1 - Piques, Maria A1 - Metzner, Daniela A1 - Stitt, Mark A1 - Lunn, John Edward T1 - Feedback inhibition of starch degradation in arabidopsis leaves mediated by trehalose 6-phosphate JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Many plants accumulate substantial starch reserves in their leaves during the day and remobilize them at night to provide carbon and energy for maintenance and growth. In this paper, we explore the role of a sugar-signaling metabolite, trehalose-6-phosphate (Tre6P), in regulating the accumulation and turnover of transitory starch in Arabidopsis (Arabidopsis thaliana) leaves. Ethanol-induced overexpression of trehalose-phosphate synthase during the day increased Tre6P levels up to 11-fold. There was a transient increase in the rate of starch accumulation in the middle of the day, but this was not linked to reductive activation of ADP-glucose pyrophosphorylase. A 2- to 3-fold increase in Tre6P during the night led to significant inhibition of starch degradation. Maltose and maltotriose did not accumulate, suggesting that Tre6P affects an early step in the pathway of starch degradation in the chloroplasts. Starch granules isolated from induced plants had a higher orthophosphate content than granules from noninduced control plants, consistent either with disruption of the phosphorylation-dephosphorylation cycle that is essential for efficient starch breakdown or with inhibition of starch hydrolysis by beta-amylase. Nonaqueous fractionation of leaves showed that Tre6P is predominantly located in the cytosol, with estimated in vivo Tre6P concentrations of 4 to 7 mu M in the cytosol, 0.2 to 0.5 mu M in the chloroplasts, and 0.05 mu M in the vacuole. It is proposed that Tre6P is a component in a signaling pathway that mediates the feedback regulation of starch breakdown by sucrose, potentially linking starch turnover to demand for sucrose by growing sink organs at night. Y1 - 2013 U6 - https://doi.org/10.1104/pp.113.226787 SN - 0032-0889 SN - 1532-2548 VL - 163 IS - 3 SP - 1142 EP - 1163 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Malinova, Irina A1 - Steup, Martin A1 - Fettke, Jörg T1 - Carbon transitions from either Calvin cycle or transitory starch to heteroglycans as revealed by 14-C-labeling experiments using protoplasts from Arabidopsis JF - Physiologia plantarum N2 - Plants metabolize transitory starch by precisely coordinated plastidial and cytosolic processes. The latter appear to include the action of water-soluble heteroglycans (SHG(in)) whose monosaccharide pattern is similar to that of apoplastic glycans (SHG(ex)) but, unlike SHG(ex), SHG(in) strongly interacts with glucosyl transferases. In this study, we analyzed starch metabolism using mesophyll protoplasts from wild-type plants and two knock-out mutants [deficient in the cytosolic transglucosidase, disproportionating isoenzyme 2 (DPE2) or the plastidial phosphoglucomutase (PGM1)] from Arabidopsis thaliana. Protoplasts prelabeled by photosynthetic (CO2)-C-14 fixation were transferred to an unlabeled medium and were darkened or illuminated. Carbon transitions from the Calvin cycle or from starch to both SHG(in) and SHG(ex) were analyzed. In illuminated protoplasts, starch turn-over was undetectable but darkened protoplasts continuously degraded starch. During illumination, neither the total C-14 content nor the labeling patterns of the sugar residues of SHG(in) were significantly altered but both the total amount and the labeling of the constituents of SHG(ex) increased with time. In darkened protoplasts, the C-14-content of most of the sugar residues of SHG(in) transiently and strongly increased and then declined. This effect was not observed in any SHG(ex) constituent. In darkened DPE2-deficient protoplasts, none of the SHG(in) constituents exhibited an essential transient increase in labeling. In contrast, some residues of SHG(in) from the PGM1 mutant exhibited a transient increase in label but this effect significantly differed from that of the wild type. Two conclusions are reached: first, SHG(in) and SHG(ex) exert different metabolic functions and second, SHG(in) is directly involved in starch degradation. Y1 - 2013 U6 - https://doi.org/10.1111/ppl.12033 SN - 0031-9317 VL - 149 IS - 1 SP - 25 EP - 44 PB - Wiley-Blackwell CY - Hoboken ER -