TY - GEN A1 - Epp, Laura Saskia A1 - Kruse, Stefan A1 - Kath, Nadja J. A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Tiedemann, Ralph A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1052 KW - ecological genetics KW - ecological modelling KW - palaeoecology KW - plant ecology KW - climate change KW - introgression KW - temperature KW - treeline KW - vegetation KW - mitochondrial haplotypes KW - Siberian larch KW - larch species KW - range shifts KW - vegetation-climate feedbacks KW - ecosystems KW - impacts KW - dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468352 SN - 1866-8372 IS - 1052 ER - TY - JOUR A1 - Epp, Laura Saskia A1 - Kruse, Stefan A1 - Kath, Nadja J. A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Tiedemann, Ralph A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling JF - Scientific reports N2 - Changes in species’ distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species’ range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-35550-w SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Kruse, Stefan A1 - Epp, Laura Saskia A1 - Wieczorek, Mareike A1 - Pestryakova, Luidmila Agafyevna A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Herzschuh, Ulrike T1 - High gene flow and complex treeline dynamics of Larix Mill. stands on the Taymyr Peninsula (north-central Siberia) revealed by nuclear microsatellites JF - Tree Genetics & Genomes N2 - Arctic treelines are facing a strong temperature increase as a result of recent global warming, causing possible changes in forest extent, which will alter vegetation-climate feedbacks. However, the mode and strength of the response is rather unclear, as potential changes are happening in areas that are very remote and difficult to access, and empirical data are still largely lacking. Here, we assessed the current population structure and genetic differentiation of Larix Mill. tree stands within the northernmost latitudinal treeline reaching ~ 72° N in the southern lowlands of the Taymyr Peninsula (~ 100° E). We sampled 743 individuals belonging to different height classes (seedlings, saplings, trees) at 11 locations along a gradient from ‘single tree’ tundra over ‘forest line’ to ‘dense forest’ stands and conducted investigations applying eight highly polymorphic nuclear microsatellites. Results suggest a high diversity within sub-populations (HE = 0.826–0.893), coupled, however, with heterozygote deficits in all sub-populations, but pronounced in ‘forest line’ stands. Overall, genetic differentiation of sub-populations is low (FST = 0.005), indicating a region-wide high gene flow, although ‘forest line’ stands harbour few rare and private alleles, likely indicating greater local reproduction. ‘Single tree’ stands, located beyond the northern forest line, are currently not involved in treeline expansion, but show signs of a long-term refuge, namely asexual reproduction and change of growth-form from erect to creeping growth, possibly having persisted for thousands of years. The lack of differentiation between the sub-populations points to a sufficiently high dispersal potential, and thus a rapid northward migration of the Siberian arctic treeline under recent global warming seems potentially unconstrained, but observations show it to be unexpectedly slow. KW - Larch KW - Population genetics KW - Boreal forests KW - Tundra-taiga transition KW - Range expansion Y1 - 2018 U6 - https://doi.org/10.1007/s11295-018-1235-3 SN - 1614-2942 SN - 1614-2950 VL - 14 IS - 2 PB - Springer CY - Heidelberg ER -