TY - JOUR A1 - Aerts, J. C. J. H. A1 - Botzen, W. J. Wouter A1 - Clarke, K. C. A1 - Cutter, S. L. A1 - Hall, J. W. A1 - Merz, Bruno A1 - Michel-Kerjan, E. A1 - Mysiak, J. A1 - Surminski, Swenja A1 - Kunreuther, H. T1 - Integrating human behaviour dynamics into flood disaster risk assessment JF - Nature climate change N2 - The behaviour of individuals, businesses, and government entities before, during, and immediately after a disaster can dramatically affect the impact and recovery time. However, existing risk-assessment methods rarely include this critical factor. In this Perspective, we show why this is a concern, and demonstrate that although initial efforts have inevitably represented human behaviour in limited terms, innovations in flood-risk assessment that integrate societal behaviour and behavioural adaptation dynamics into such quantifications may lead to more accurate characterization of risks and improved assessment of the effectiveness of risk-management strategies and investments. Such multidisciplinary approaches can inform flood-risk management policy development. Y1 - 2018 U6 - https://doi.org/10.1038/s41558-018-0085-1 SN - 1758-678X SN - 1758-6798 VL - 8 IS - 3 SP - 193 EP - 199 PB - Nature Publ. Group CY - London ER - TY - THES A1 - Agarwal, Ankit T1 - Unraveling spatio-temporal climatic patterns via multi-scale complex networks T1 - Aufklärung raumzeitlicher Klimamuster über komplexe Netzwerke mit mehreren Maßstäben N2 - The climate is a complex dynamical system involving interactions and feedbacks among different processes at multiple temporal and spatial scales. Although numerous studies have attempted to understand the climate system, nonetheless, the studies investigating the multiscale characteristics of the climate are scarce. Further, the present set of techniques are limited in their ability to unravel the multi-scale variability of the climate system. It is completely plausible that extreme events and abrupt transitions, which are of great interest to climate community, are resultant of interactions among processes operating at multi-scale. For instance, storms, weather patterns, seasonal irregularities such as El Niño, floods and droughts, and decades-long climate variations can be better understood and even predicted by quantifying their multi-scale dynamics. This makes a strong argument to unravel the interaction and patterns of climatic processes at different scales. With this background, the thesis aims at developing measures to understand and quantify multi-scale interactions within the climate system. In the first part of the thesis, I proposed two new methods, viz, multi-scale event synchronization (MSES) and wavelet multi-scale correlation (WMC) to capture the scale-specific features present in the climatic processes. The proposed methods were tested on various synthetic and real-world time series in order to check their applicability and replicability. The results indicate that both methods (WMC and MSES) are able to capture scale-specific associations that exist between processes at different time scales in a more detailed manner as compared to the traditional single scale counterparts. In the second part of the thesis, the proposed multi-scale similarity measures were used in constructing climate networks to investigate the evolution of spatial connections within climatic processes at multiple timescales. The proposed methods WMC and MSES, together with complex network were applied to two different datasets. In the first application, climate networks based on WMC were constructed for the univariate global sea surface temperature (SST) data to identify and visualize the SSTs patterns that develop very similarly over time and distinguish them from those that have long-range teleconnections to other ocean regions. Further investigations of climate networks on different timescales revealed (i) various high variability and co-variability regions, and (ii) short and long-range teleconnection regions with varying spatial distance. The outcomes of the study not only re-confirmed the existing knowledge on the link between SST patterns like El Niño Southern Oscillation and the Pacific Decadal Oscillation, but also suggested new insights into the characteristics and origins of long-range teleconnections. In the second application, I used the developed non-linear MSES similarity measure to quantify the multivariate teleconnections between extreme Indian precipitation and climatic patterns with the highest relevance for Indian sub-continent. The results confirmed significant non-linear influences that were not well captured by the traditional methods. Further, there was a substantial variation in the strength and nature of teleconnection across India, and across time scales. Overall, the results from investigations conducted in the thesis strongly highlight the need for considering the multi-scale aspects in climatic processes, and the proposed methods provide robust framework for quantifying the multi-scale characteristics. N2 - Das Klima ist ein komplexes Zusammenspiel verschiedener Mechanismen und Rückkopplungen auf mehreren zeitlichen und räumlichen Skalen. Viele Studien beschäftigten sich mit dem diesem System, nur wenige jedoch konzentrierten sich auf das Multiskalenverhalten des Klimas. Vor allem die bis dato verfügbaren Techniken schränkten eine vertiefte Analyse der Klimavariabilität auf unterschiedlichen Skalen ein. Von großen Interesse in der aktuellen Klimaforschung sind Extremereignisse und plötzliche Veränderungen, welche höchstwahrscheinlich aus dem Zusammenwirken von Prozessen auf unterschiedlichen Skalen hervorgehen. Um Stürme, wiederkehrende Wetterlagen, jahreszeitliche Phänomene wie El Niño, Fluten, Dürren oder Klimaschwankungen über Jahrzehnte besser zu verstehen oder sogar vorhersagen zu können, müssen wir deren Dynamik auf unterschiedlichen Skalen quantifizieren. In der vorliegenden Arbeit werden Mittel und Wege präsentiert um das Zusammenwirken auf verschiedenen Skalen im Klimasystem besser zu verstehen und zu quantifizieren. Im ersten Teil dieser Arbeit stelle ich zwei Methoden, multi-scale event synchronization (MSES) und wavelet multi-scale correlation (WMC) vor, welche skalenspezifischen Eigenschaften in klimatischen Prozessen abbilden. Die vorgestellte Methode wurde mit mehreren synthetischen und realen Zeitreihen getestet um ihre Anwendbarkeit und Reproduzierbarkeit zu überprüfen. Die Ergebnisse zeigen, dass beide Methoden Beziehungen auf unterschiedlichen zeitlichen Skalen detaillierter als traditionelle Ansätze abbilden können. Im zweiten Teil dieser Arbeit bilde ich klimatische Netzwerke mithilfe eines Maßes zur Ähnlichkeit auf Multiskalen. Dabei untersuche ich die Entwicklung von räumlichen Beziehungen um klimatische Prozesse auf mehreren Zeitskalen zu verstehen. Die Methoden WMC und MSES werden zusammen mit komplexen Netzwerken auf zwei Datensätze angewendet. In der ersten Anwendung werden klimatische Netzwerke mit WMC für univariate globale Meeresoberflächentemperaturen gebildet. Auf unterschiedlichen Zeitskalen sollen dabei kurze und lange Fernwirkungen, welche andernfalls auf einer einzigen Zeitskale unerkannt blieben, entdeckt werden. In diesem Klimanetzwerk ließ sich eine starke Variabilität über die Zeit feststellen, was auf eine skalenfreie und kleinräumige Netzstruktur auf großem, beziehungsweise kleinem Maßstab schließen lässt. Weitere Untersuchungen von Klimanetzwerken auf unterschiedlichen Zeitskalen zeigte (i) hohe Variabilität und Co-Variabilität in Regionen, und (ii) Fernbeziehungen auf kurzen und langen Entfernungen mit variabler räumlicher Distanz. Die Ergebnisse bestätigen bekannte physikalischen Wechselwirkungen und daher auch die Stärken meines Ansatzes. Dadurch ergeben sich neue Einblicke in die Klimatologie von Ozeanen, sodass beispielsweise konvektive Prozesse in der Atmosphäre eine Abhängigkeit über weite Entfernungen aufweisen können. In der zweiten Anwendung verwendeten wir das von mir entwickelte, nicht-lineare MSES Ähnlichkeitsmaß um multivariate Fernbeziehungen zwischen Starkniederschlägen und klimatischen Mustern über Indien zu quantifizieren. Unsere Ergebnisse bestätigen signifikante, nicht-lineare Einflüsse, welche von traditionellen Methoden bisher unzureichend abgebildet wurden. Des Weiteren fanden wir deutliche Schwankungen in der Stärke und in der Ausprägung von Fernbeziehungen über Indien und über Zeitskalen. Zusammenfassend zeigen die Ergebnisse dieser Fallstudien, dass Multiskalen in Klimaprozessen entschieden berücksichtigt werden müssen und dass der entwickelte methodische Rahmen adäquat die charakteristischen Prozesse quantifizieren kann. KW - complex network KW - wavelet KW - climate global and local patterns KW - extreme events KW - multiscale network KW - event synchronization KW - komplexes Netzwerk KW - Wavelet KW - globale und lokale Muster des Klimas KW - extreme Ereignisse KW - Multiskalen Netzwerk KW - Ereignissynchronisation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423956 ER - TY - JOUR A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Merz, Bruno A1 - Kurths, Jürgen T1 - Quantifying the roles of single stations within homogeneous regions using complex network analysis JF - Journal of hydrology N2 - Regionalization and pooling stations to form homogeneous regions or communities are essential for reliable parameter transfer, prediction in ungauged basins, and estimation of missing information. Over the years, several clustering methods have been proposed for regional analysis. Most of these methods are able to quantify the study region in terms of homogeneity but fail to provide microscopic information about the interaction between communities, as well as about each station within the communities. We propose a complex network-based approach to extract this valuable information and demonstrate the potential of our approach using a rainfall network constructed from the Indian gridded daily precipitation data. The communities were identified using the network-theoretical community detection algorithm for maximizing the modularity. Further, the grid points (nodes) were classified into universal roles according to their pattern of within- and between-community connections. The method thus yields zoomed-in details of individual rainfall grids within each community. KW - Complex network KW - Event synchronization KW - Rainfall network KW - Z-P approach Y1 - 2018 U6 - https://doi.org/10.1016/j.jhydrol.2018.06.050 SN - 0022-1694 SN - 1879-2707 VL - 563 SP - 802 EP - 810 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Aiken, John M. A1 - Aiken, Chastity A1 - Cotton, Fabrice T1 - A python library for teaching computation to seismology students JF - Seismological research letters N2 - Python is at the forefront of scientific computation for seismologists and therefore should be introduced to students interested in becoming seismologists. On its own, Python is open source and well designed with extensive libraries. However, Python code can also be executed, visualized, and communicated to others with "Jupyter Notebooks". Thus, Jupyter Notebooks are ideal for teaching students Python and scientific computation. In this article, we designed an openly available Python library and collection of Jupyter Notebooks based on defined scientific computation learning goals for seismology students. The Notebooks cover topics from an introduction to Python to organizing data, earthquake catalog statistics, linear regression, and making maps. Our Python library and collection of Jupyter Notebooks are meant to be used as course materials for an upper-division data analysis course in an Earth Science Department, and the materials were tested in a Probabilistic Seismic Hazard course. However, seismologists or anyone else who is interested in Python for data analysis and map making can use these materials. Y1 - 2018 U6 - https://doi.org/10.1785/0220170246 SN - 0895-0695 SN - 1938-2057 VL - 89 IS - 3 SP - 1165 EP - 1171 PB - Seismological Society of America CY - Albany ER - TY - GEN A1 - Al-Halbouni, Djamil A1 - Holohan, Eoghan P. A1 - Taheri, Abbas A1 - Schöpfer, Martin P. J. A1 - Emam, Sacha A1 - Dahm, Torsten T1 - Geomechanical modelling of sinkhole development using distinct elements BT - model verification for a single void space and application to the Dead Sea area T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Mechanical and/or chemical removal of material from the subsurface may generate large subsurface cavities, the destabilisation of which can lead to ground collapse and the formation of sinkholes. Numerical simulation of the interaction of cavity growth, host material deformation and overburden collapse is desirable to better understand the sinkhole hazard but is a challenging task due to the involved high strains and material discontinuities. Here, we present 2-D distinct element method numerical simulations of cavity growth and sinkhole development. Firstly, we simulate cavity formation by quasi-static, stepwise removal of material in a single growing zone of an arbitrary geometry and depth. We benchmark this approach against analytical and boundary element method models of a deep void space in a linear elastic material. Secondly, we explore the effects of properties of different uniform materials on cavity stability and sinkhole development. We perform simulated biaxial tests to calibrate macroscopic geotechnical parameters of three model materials representative of those in which sinkholes develop at the Dead Sea shoreline: mud, alluvium and salt. We show that weak materials do not support large cavities, leading to gradual sagging or suffusion-style subsidence. Strong materials support quasi-stable to stable cavities, the overburdens of which may fail suddenly in a caprock or bedrock collapse style. Thirdly, we examine the consequences of layered arrangements of weak and strong materials. We find that these are more susceptible to sinkhole collapse than uniform materials not only due to a lower integrated strength of the overburden but also due to an inhibition of stabilising stress arching. Finally, we compare our model sinkhole geometries to observations at the Ghor Al-Haditha sinkhole site in Jordan. Sinkhole depth ∕ diameter ratios of 0.15 in mud, 0.37 in alluvium and 0.33 in salt are reproduced successfully in the calibrated model materials. The model results suggest that the observed distribution of sinkhole depth ∕ diameter values in each material type may partly reflect sinkhole growth trends. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1061 KW - rock mass KW - karst KW - dissolution KW - reflection KW - subsidence KW - subrosion KW - collapse KW - simulation KW - scale KW - fault Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468435 SN - 1866-8372 IS - 1061 ER - TY - JOUR A1 - Al-Halbouni, Djamil A1 - Holohan, Eoghan P. A1 - Taheri, Abbas A1 - Schöpfer, Martin P. J. A1 - Emam, Sacha A1 - Dahm, Torsten T1 - Geomechanical modelling of sinkhole development using distinct elements BT - model verification for a single void space and application to the Dead Sea area JF - Solid earth N2 - Mechanical and/or chemical removal of material from the subsurface may generate large subsurface cavities, the destabilisation of which can lead to ground collapse and the formation of sinkholes. Numerical simulation of the interaction of cavity growth, host material deformation and overburden collapse is desirable to better understand the sinkhole hazard but is a challenging task due to the involved high strains and material discontinuities. Here, we present 2-D distinct element method numerical simulations of cavity growth and sinkhole development. Firstly, we simulate cavity formation by quasi-static, stepwise removal of material in a single growing zone of an arbitrary geometry and depth. We benchmark this approach against analytical and boundary element method models of a deep void space in a linear elastic material. Secondly, we explore the effects of properties of different uniform materials on cavity stability and sinkhole development. We perform simulated biaxial tests to calibrate macroscopic geotechnical parameters of three model materials representative of those in which sinkholes develop at the Dead Sea shoreline: mud, alluvium and salt. We show that weak materials do not support large cavities, leading to gradual sagging or suffusion-style subsidence. Strong materials support quasi-stable to stable cavities, the overburdens of which may fail suddenly in a caprock or bedrock collapse style. Thirdly, we examine the consequences of layered arrangements of weak and strong materials. We find that these are more susceptible to sinkhole collapse than uniform materials not only due to a lower integrated strength of the overburden but also due to an inhibition of stabilising stress arching. Finally, we compare our model sinkhole geometries to observations at the Ghor Al-Haditha sinkhole site in Jordan. Sinkhole depth / diameter ratios of 0.15 in mud, 0.37 in alluvium and 0.33 in salt are reproduced successfully in the calibrated model materials. The model results suggest that the observed distribution of sinkhole depth / diameter values in each material type may partly reflect sinkhole growth trends. Y1 - 2018 U6 - https://doi.org/10.5194/se-9-1341-2018 SN - 1869-9510 SN - 1869-9529 VL - 9 IS - 6 SP - 1341 EP - 1373 PB - Copernicus CY - Göttingen ER - TY - THES A1 - Angermann, Lisa T1 - Hillslope-stream connectivity across scales T1 - Mehrskalige Untersuchung der Hang-Bach Konnektivität N2 - The concept of hydrologic connectivity summarizes all flow processes that link separate regions of a landscape. As such, it is a central theme in the field of catchment hydrology, with influence on neighboring disciplines such as ecology and geomorphology. It is widely acknowledged to be an important key in understanding the response behavior of a catchment and has at the same time inspired research on internal processes over a broad range of scales. From this process-hydrological point of view, hydrological connectivity is the conceptual framework to link local observations across space and scales. This is the context in which the four studies this thesis comprises of were conducted. The focus was on structures and their spatial organization as important control on preferential subsurface flow. Each experiment covered a part of the conceptualized flow path from hillslopes to the stream: soil profile, hillslope, riparian zone, and stream. For each study site, the most characteristic structures of the investigated domain and scale, such as slope deposits and peat layers were identified based on preliminary or previous investigations or literature reviews. Additionally, further structural data was collected and topographical analyses were carried out. Flow processes were observed either based on response observations (soil moisture changes or discharge patterns) or direct measurement (advective heat transport). Based on these data, the flow-relevance of the characteristic structures was evaluated, especially with regard to hillslope to stream connectivity. Results of the four studies revealed a clear relationship between characteristic spatial structures and the hydrological behavior of the catchment. Especially the spatial distribution of structures throughout the study domain and their interconnectedness were crucial for the establishment of preferential flow paths and their relevance for large-scale processes. Plot and hillslope-scale irrigation experiments showed that the macropores of a heterogeneous, skeletal soil enabled preferential flow paths at the scale of centimeters through the otherwise unsaturated soil. These flow paths connected throughout the soil column and across the hillslope and facilitated substantial amounts of vertical and lateral flow through periglacial slope deposits. In the riparian zone of the same headwater catchment, the connectivity between hillslopes and stream was controlled by topography and the dualism between characteristic subsurface structures and the geomorphological heterogeneity of the stream channel. At the small scale (1 m to 10 m) highest gains always occurred at steps along the longitudinal streambed profile, which also controlled discharge patterns at the large scale (100 m) during base flow conditions (number of steps per section). During medium and high flow conditions, however, the impact of topography and parafluvial flow through riparian zone structures prevailed and dominated the large-scale response patterns. In the streambed of a lowland river, low permeability peat layers affected the connectivity between surface water and groundwater, but also between surface water and the hyporheic zone. The crucial factor was not the permeability of the streambed itself, but rather the spatial arrangement of flow-impeding peat layers, causing increased vertical flow through narrow “windows” in contrast to predominantly lateral flow in extended areas of high hydraulic conductivity sediments. These results show that the spatial organization of structures was an important control for hydrological processes at all scales and study areas. In a final step, the observations from different scales and catchment elements were put in relation and compared. The main focus was on the theoretical analysis of the scale hierarchies of structures and processes and the direction of causal dependencies in this context. Based on the resulting hierarchical structure, a conceptual framework was developed which is capable of representing the system’s complexity while allowing for adequate simplifications. The resulting concept of the parabolic scale series is based on the insight that flow processes in the terrestrial part of the catchment (soil and hillslopes) converge. This means that small-scale processes assemble and form large-scale processes and responses. Processes in the riparian zone and the streambed, however, are not well represented by the idea of convergence. Here, the large-scale catchment signal arrives and is modified by structures in the riparian zone, stream morphology, and the small-scale interactions between surface water and groundwater. Flow paths diverge and processes can better be represented by proceeding from large scales to smaller ones. The catchment-scale representation of processes and structures is thus the conceptual link between terrestrial hillslope processes and processes in the riparian corridor. N2 - Das Konzept der hydrologischen Konnektivität umfasst alle Fließprozesse, welche verschiedene Bereiche einer Landschaft verbinden. Als solches ist es ein zentrales Thema in dem Forschungsbereich der Einzugsgebietshydrologie und beeinflusst auch benachbarte Disziplinen wie die Ökologie oder die Geomorphologie. Es ist allgemein akzeptiert, dass das Konzept der Konnektivität ein wichtiger Schlüssel zum Verständnis von Einzugsgebietsdynamiken ist, gleichzeitig inspiriert es die Erforschung interner Prozesse auf verschiedenen Skalen. Von dieser prozesshydrologischen Perspektive gesehen, bietet Konnektivität einen konzeptionellen Rahmen, um lokale Beobachtungen über Raum und Skalen miteinander in Verbindung zu setzen. In diesem Kontext stehen die vier Studien dieser Doktorarbeit. Der Fokus lag dabei auf räumlichen Strukturen als wichtigem Kontrollfaktor für präferentielle Fließpfade als spezieller Form unterirdischer Fließprozesse. Die Experimente deckten dabei je einen Abschnitt des konzeptionellen Fließweges vom Hang zum Bach exemplarisch ab: Bodenprofil und Hang, Hang und Auenbreich, und Bachbett. Für alle vier Studien wurden zunächst charakteristische Strukturen des Untersuchungsgebietes wie Schuttablagerungen am Hang oder Torfschichten im Flussbett auf Basis vorausgehender Untersuchungen und Literaturrecherchen identifiziert. Zusätzlich wurden weitere strukturelle Daten erfasst und digitale Geländemodelle ausgewertet. Anschließend wurde die Prozessrelevanz dieser Strukturen, vor allem im Hinblick auf die Hang-Bach-Konnektivität, untersucht. Die Ergebnisse der einzelnen Studien zeigten eine deutliche Verbindung zwischen den charakteristischen räumlichen Strukturen und dem hydrologischen Verhalten des untersuchten Gebietes. Insbesondere die räumliche Anordnung von Strukturen, d.h. die räumliche Verteilung und der Grad der Konnektivität der Strukturen, war ausschlaggebend für die Ausbildung präferenzieller Fließpfade und deren Relevanz für größerskalige Prozesse. Die räumliche Organisation von Strukturen war in allen Untersuchungsgebieten ein wichtiger Kontrollfaktor für hydrologische Prozesse. Die Beobachtungen auf verschiedenen Skalen und verschiedener Fließpfadabschnitte wurden miteinander in Verbindung gesetzt und verglichen. Besonderes Augenmerk lag dabei auf der theoretischen Analyse der Skalenhierarchie von Strukturen und Prozessen und der Richtung der Kausalität in diesem Zusammenhang. Auf dieser Grundlage wurde als Synthese der einzelnen Studien ein Konzept entwickelt, welches in der Lage ist, die Komplexität eines Einzugsgebietes abzubilden und gleichzeitig adequate Vereinfachungen zuzulassen. Diese Konzept der parabelförmigen Skalenabfolge beruht auf der Erkenntnis, dass Fließprozesse im terrestrischen Bereich eines Einzugsgebietes, also im Boden und den Hängen, vorwiegend konvergieren und sich von der kleinen Skala zur größeren hin zusammenfügen. Die Prozesse in der Aue und dem Bachbett werden von diesem Prinzip der Konvergenz allerding nicht abgebildet. Die in den Böden und an den Hängen erzeugten Fließmuster des Einzugsgebiets werden von den Strukturen in der Aue, der Morphologie des Baches und den kleinskaligen Wechselwirkungen zwischen Fließgewässer und Sediment überprägt. Die Fließprozesse divergieren, und eine Beschreibung von der großen Skala hin zur kleineren ist hier besser geeignet. Die räumlich diskrete oder konzeptionelle Darstellung von Prozessen auf der Einzugsgebietsskala bietet so die Verbindung zwischen terrestrischer Hanghydrologie und der bachseitigen Auenhydrologie. KW - catchment hydrology KW - hillslope hydrology KW - riparian zone KW - hyporheic zone KW - Einzugsgebietshydrologie KW - Hanghydrologie KW - Auenbereich KW - hyporheische Zone Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424542 ER - TY - JOUR A1 - Apaestegui, James A1 - Cruz, Francisco William A1 - Vuille, Mathias A1 - Fohlmeister, Jens Bernd A1 - Carlo Espinoza, Jhan A1 - Sifeddine, Abdelfettah A1 - Strikis, Nicolas A1 - Guyot, Jean Loup A1 - Ventura, Roberto A1 - Cheng, Hai A1 - Edwards, R. Lawrence T1 - Precipitation changes over the eastern Bolivian Andes inferred from speleothem (delta O-18) records for the last 1400 years JF - Earth & planetary science letters N2 - Here we present high-resolution delta O-18 records obtained from speleothems collected in the eastern Bolivian Andes. The stable isotope records are related to the regional- to large-scale atmospheric circulation over South America and allow interpreting changes in delta O-18 during the last 1400 yr as a function of changes in precipitation regimes over the southern tropical Andes. Two distinct phases with more negative delta O-18 values, interpreted as periods of increased convective activity over the eastern Andean Cordillera in Bolivia are observed concomitantly with periods of global climate anomalies during the last millennium, such as the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) respectively. Changes in the Bolivian delta O-18 record during the LIA are apparently related to a southward displacement of the Intertropical Convergence Zone (ITCZ), which acts as a main moisture driver to intensify convection over the tropical continent. During the MCA, however, the increased convective activity observed in the Bolivian record is likely the result of a different mechanism, which implies moisture sourced mainly from the southern tropical Atlantic. This interpretation is consistent with paleoclimate records further to the north in the tropical Andes that show progressively drier conditions during this time period, indicating a more northerly position of the ITCZ. The transition period between the MCA and the LIA shows a slight tendency toward increased delta O-18 values, indicating weakened convective activity. Our results also reveal a non-stationary anti-phased behavior between the delta O-18 reconstructions from Bolivia and northeastern Brazil that confirms a continental-scale east-west teleconnection across South America during the LIA. KW - speleothems KW - stable isotopes KW - MCA KW - LIA KW - Bolivia KW - South American Monsoon Y1 - 2018 U6 - https://doi.org/10.1016/j.epsl.2018.04.048 SN - 0012-821X SN - 1385-013X VL - 494 SP - 124 EP - 134 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Asari, Seiki A1 - Wardinski, Ingo T1 - Interannual fluctuations of the core angular momentum inferred from geomagnetic field models JF - Magnetic Fields in the Solar System : Planets, Moons and Solar Wind Interactions Y1 - 2018 SN - 978-3-319-64292-5 SN - 978-3-319-64291-8 U6 - https://doi.org/10.1007/978-3-319-64292-5_4 SN - 0067-0057 VL - 448 SP - 111 EP - 123 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Asgarimehr, Milad A1 - Wickert, Jens A1 - Reich, Sebastian T1 - TDS-1 GNSS Reflectometry BT - Development and Validation of Forward Scattering Winds JF - IEEE journal of selected topics in applied earth observations and remote sensing N2 - This study presents the development and a systematic evaluation study of GNSS reflectometry wind speeds. After establishing a wind speed retrieval algorithm, UK TechDemoSat-1 (TDS-1) derived winds, from May 2015 to July 2017, are compared to the Advanced Scatterometer (ASCAT). ERA-Interim wind fields of the European Centre for Medium-range Weather Forecasts (ECMWF) and in situ observation from Tropical Atmosphere Ocean buoy array in the Pacific are taken as reference. One-year averaged TDS-1 global winds demonstrate small differences with ECMWF in a majority of areas as well as discuss under- and overestimations. The pioneering TDS-1 winds demonstrate a root-mean-squared error (RMSE) and bias of 2.77 and -0.33 m/s, which are comparable to the RMSE and bias derived by ASCAT winds, as large as 2.31 and 0.25 m/s, respectively. Using buoys measurements as reference, RMSE and bias of 2.23 and -0.03 m/s for TDS-1 as well as 1.40 and -0.68 m/s for ASCAT are obtained. Utilizing rain microwave-infrared estimates of the Tropical Rainfall Measuring Mission, rain-affected observation of both ASCAT and TDS-1 are collected and evaluated. Although ASCAT winds show a significant performance degradation resulting in an RMSE and bias of 3.16 and 1.03 m/s, respectively, during rain condition, TDS-1 shows a more reliable performance with an RMSE and bias of 2.94 and -0.21 m/s, respectively, which indicates the promising capability of GNSS forward scattering for wind retrievals during rain. A decrease in TDS-1-derived bistatic radar cross sections during rain events, at weak winds, is also demonstrated. KW - Advanced scatterometer (ASCAT) KW - European Centre for Medium-Range Weather Forecasts (ECMWF) KW - GNSS forward scatterometry KW - GNSS reflectometry KW - TechDemoSat-1 (TDS-1) KW - wind speed Y1 - 2018 U6 - https://doi.org/10.1109/JSTARS.2018.2873241 SN - 1939-1404 SN - 2151-1535 VL - 11 IS - 11 SP - 4534 EP - 4541 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Asgarimehr, Milad A1 - Zavorotny, Valery A1 - Wickert, Jens A1 - Reich, Sebastian T1 - Can GNSS Reflectometry Detect Precipitation Over Oceans? JF - Geophysical research letters N2 - For the first time, a rain signature in Global Navigation Satellite System Reflectometry (GNSS-R) observations is demonstrated. Based on the argument that the forward quasi-specular scattering relies upon surface gravity waves with lengths larger than several wavelengths of the reflected signal, a commonly made conclusion is that the scatterometric GNSS-R measurements are not sensitive to the surface small-scale roughness generated by raindrops impinging on the ocean surface. On the contrary, this study presents an evidence that the bistatic radar cross section sigma(0) derived from TechDemoSat-1 data is reduced due to rain at weak winds, lower than approximate to 6 m/s. The decrease is as large as approximate to 0.7 dB at the wind speed of 3 m/s due to a precipitation of 0-2 mm/hr. The simulations based on the recently published scattering theory provide a plausible explanation for this phenomenon which potentially enables the GNSS-R technique to detect precipitation over oceans at low winds. KW - GNSS Reflectometry KW - rain detection KW - rain splash KW - TDS-1 KW - ocean surface KW - electromagnetic scattering Y1 - 2018 U6 - https://doi.org/10.1029/2018GL079708 SN - 0094-8276 SN - 1944-8007 VL - 45 IS - 22 SP - 12585 EP - 12592 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Ashastina, Kseniia A1 - Kuzmina, Svetlana A1 - Rudaya, Natalia A1 - Troeva, Elena I. A1 - Schoch, Werner H. A1 - Roemermann, Christine A1 - Reinecke, Jennifer A1 - Otte, Volker A1 - Savvinov, Grigoriy A1 - Wesche, Karsten A1 - Kienast, Frank T1 - Woodlands and steppes BT - Pleistocene vegetation in Yakutia's most continental part recorded in the Batagay permafrost sequence JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Based on fossil organism remains including plant macrofossils, charcoal, pollen, and invertebrates preserved in syngenetic deposits of the Batagay permafrost sequence in the Siberian Yana Highlands, we reconstructed the environmental history during marine isotope stages (MIS) 6 to 2. Two fossil assemblages, exceptionally rich in plant remains, allowed for a detailed description of the palaeo-vegetation during two climate extremes of the Late Pleistocene, the onset of the last glacial maximum (LGM) and the last interglacial. In addition, altogether 41 assemblages were used to outline the vegetation history since the penultimate cold stage of MIS 6. Accordingly, meadow steppes analogue to modern communities of the phytosociological order Festucetalia lenensis formed the primary vegetation during the Saalian and Weichselian cold stages. Cold-resistant tundra-steppe communities (Carici rupestris-Kobresietea bellardii) as they occur above the treeline today were, in contrast to more northern locations, mostly lacking. During the last interglacial, open coniferous woodland similar to modern larch taiga was the primary vegetation at the site. Abundant charcoal indicates wildfire events during the last interglacial. Zoogenic disturbances of the local vegetation were indicated by the presence of ruderal plants, especially by abundant Urtica dioica, suggesting that the area was an interglacial refugium for large herbivores. Meadow steppes, which formed the primary vegetation during cold stages and provided potentially suitable pastures for herbivores, were a significant constituent of the plant cover in the Yana Highlands also under the full warm stage conditions of the last interglacial. Consequently, meadow steppes occurred in the Yana Highlands during the entire investigated timespan from MIS 6 to MIS 2 documenting a remarkable environmental stability. Thus, the proportion of meadow steppe vegetation merely shifted in response to the respectively prevailing climatic conditions. Their persistence indicates low precipitation and a relatively warm growing season throughout and beyond the late Pleistocene. The studied fossil record also proves that modern steppe occurrences in the Yana Highlands did not establish as late as in the Holocene but instead are relicts of a formerly continuous steppe belt extending from Central Siberia to Northeast Yakutia during the Pleistocene. The persistence of plants and invertebrates characteristic of meadow steppe vegetation in interior Yakutia throughout the late Quaternary indicates climatic continuity and documents the suitability of this region as a refugium also for other organisms of the Pleistocene mammoth steppe including the iconic large herbivores. (C)2018 Elsevier Ltd. All rights reserved. KW - Palaeo-vegetation KW - Plant macrofossils KW - Invertebrates KW - Modern analogues KW - Pollen KW - Ground squirrel nest KW - Last cold stage KW - Eemian KW - Beringia Y1 - 2018 U6 - https://doi.org/10.1016/j.quascirev.2018.07.032 SN - 0277-3791 VL - 196 SP - 38 EP - 61 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Atsawawaranunt, Kamolphat A1 - Comas-Bru, Laia A1 - Mozhdehi, Sahar Amirnezhad A1 - Deininger, Michael A1 - Harrison, Sandy P. A1 - Baker, Andy A1 - Boyd, Meighan A1 - Kaushal, Nikita A1 - Ahmad, Syed Masood A1 - Brahim, Yassine Ait A1 - Arienzo, Monica A1 - Bajo, Petra A1 - Braun, Kerstin A1 - Burstyn, Yuval A1 - Chawchai, Sakonvan A1 - Duan, Wuhui A1 - Hatvani, Istvan Gabor A1 - Hu, Jun A1 - Kern, Zoltan A1 - Labuhn, Inga A1 - Lachniet, Matthew A1 - Lechleitner, Franziska A. A1 - Lorrey, Andrew A1 - Perez-Mejias, Carlos A1 - Pickering, Robyn A1 - Scroxton, Nick A1 - Atkinson, Tim A1 - Ayalon, Avner A1 - Baldini, James A1 - Bar-Matthews, Miriam A1 - Pablo Bernal, Juan A1 - Breitenbach, Sebastian Franz Martin A1 - Boch, Ronny A1 - Borsato, Andrea A1 - Cai, Yanjun A1 - Carolin, Stacy A1 - Cheng, Hai A1 - Columbu, Andrea A1 - Couchoud, Isabelle A1 - Cruz, Francisco A1 - Demeny, Attila A1 - Dominguez-Villar, David A1 - Dragusin, Virgil A1 - Drysdale, Russell A1 - Ersek, Vasile A1 - Finne, Martin A1 - Fleitmann, Dominik A1 - Fohlmeister, Jens Bernd A1 - Frappier, Amy A1 - Genty, Dominique A1 - Holzkamper, Steffen A1 - Hopley, Philip A1 - Kathayat, Gayatri A1 - Keenan-Jones, Duncan A1 - Koltai, Gabriella A1 - Luetscher, Marc A1 - Li, Ting-Yong A1 - Lone, Mahjoor Ahmad A1 - Markowska, Monika A1 - Mattey, Dave A1 - McDermott, Frank A1 - Moreno, Ana A1 - Moseley, Gina A1 - Nehme, Carole A1 - Novello, Valdir F. A1 - Psomiadis, David A1 - Rehfeld, Kira A1 - Ruan, Jiaoyang A1 - Sekhon, Natasha A1 - Sha, Lijuan A1 - Sholz, Denis A1 - Shopov, Yavor A1 - Smith, Andrew A1 - Strikis, Nicolas A1 - Treble, Pauline A1 - Unal-Imer, Ezgi A1 - Vaks, Anton A1 - Vansteenberge, Stef A1 - Veiga-Pires, Cristina A1 - Voarintsoa, Ny Riavo A1 - Wang, Xianfeng A1 - Wong, Corinne A1 - Wortham, Barbara A1 - Wurtzel, Jennifer A1 - Zong, Baoyun T1 - The SISAL database BT - a global resource to document oxygen and carbon isotope records from speleothems JF - Earth System Science Data N2 - Stable isotope records from speleothems provide information on past climate changes, most particularly information that can be used to reconstruct past changes in precipitation and atmospheric circulation. These records are increasingly being used to provide "out-of-sample" evaluations of isotope-enabled climate models. SISAL (Speleothem Isotope Synthesis and Analysis) is an international working group of the Past Global Changes (PAGES) project. The working group aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation. The SISAL database contains data for individual speleothems, grouped by cave system. Stable isotopes of oxygen and carbon (delta O-18, delta C-13) measurements are referenced by distance from the top or bottom of the speleothem. Additional tables provide information on dating, including information on the dates used to construct the original age model and sufficient information to assess the quality of each data set and to erect a standardized chronology across different speleothems. The metadata table provides location information, information on the full range of measurements carried out on each speleothem and information on the cave system that is relevant to the interpretation of the records, as well as citations for both publications and archived data. Y1 - 2018 U6 - https://doi.org/10.5194/essd-10-1687-2018 SN - 1866-3508 SN - 1866-3516 VL - 10 IS - 3 SP - 1687 EP - 1713 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Awais, Muhammad A1 - Ahmad, Rafiq A1 - Khan, Nadeem A1 - Garapati, Prashanth A1 - Shahzad, Muhammad A1 - Afroz, Amber A1 - Rashid, Umer A1 - Khan, Sabaz Ali T1 - Transformation of tomato variety rio grande with drought resistant transcription factor gene ATAF1 and its molecular analysis JF - Pakistan Journal of Botany N2 - Tomato (Solanum lycopersicum L.) being an important vegetable is cultivated and used throughout the world. It not only contributes in fulfilling the basic nutritional requirements of the human body but also has many health benefits due to its rich biochemical composition. However, its production at large scale is hampered by many limiting factors such as biotic and abiotic stresses. Among the different abiotic stresses, drought poses drastic impact on tomato yield. Drought stress is genetically regulated by many transcription factors that not only regulate the stress responsive mechanism but also facilitate the growth and development of tomato plants. NAC is an important stress related transcription factor genes family, and the ATAF1 gene, a member of this family, is involved in ABA signaling and stress response. In this study, tomato variety Rio Drande was transformed with drought resistant ATAF1 gene via Agrobacterium mediated gene transformation method. The ATAF1 gene was first cloned in the pK7WFG2 vector having kanamycin selectable marker and then it was introduced in the Agrobacterium tumefaciens strain GV3101 through heat shock method. The tomato cotyledon and hypocotyl ex-plants of variety "Rio Ggrande" were cultured on callus induction medium (MS + 2.5 mg/L IAA + 2 mg/L BAP). The calli were then infected with Agrobacterium tumefaciens strain GV3101 containing ATAF1 gene and selection was carried out on the kanamycin selectable medium (MS + 100 mg/L Kan), and were regenerated on MS medium with 1 mg/L IAA + 1 mg/L BAP. Out of 216 putative transformed calli, 13 calli were able to regenerate on the selection medium. Of the 13 calli, three transgenic tomato plantlets were recovered, and these were confirmed through PCR analysis for the presence of 432 bp fragment of ATAF1 gene. The transformation protocol reported here can be used to generate drought resistant tomato plants in future. KW - Agrobacterium tumefaciens KW - drought stress KW - NAC transcription factor ATAF1 KW - plant transformation KW - Rio Grande KW - tomato Y1 - 2018 SN - 0556-3321 SN - 2070-3368 VL - 50 IS - 5 SP - 1811 EP - 1820 PB - Pakistan botanic soc CY - Karachi ER - TY - JOUR A1 - Ayllon, Daniel A1 - Grimm, Volker A1 - Attinger, Sabine A1 - Hauhs, Michael A1 - Simmer, Clemens A1 - Vereecken, Harry A1 - Lischeid, Gunnar T1 - Cross-disciplinary links in environmental systems science BT - Current state and claimed needs identified in a meta-review of process models JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Terrestrial environmental systems are characterised by numerous feedback links between their different compartments. However, scientific research is organized into disciplines that focus on processes within the respective compartments rather than on interdisciplinary links. Major feedback mechanisms between compartments might therefore have been systematically overlooked so far. Without identifying these gaps, initiatives on future comprehensive environmental monitoring schemes and experimental platforms might fail. We performed a comprehensive overview of feedbacks between compartments currently represented in environmental sciences and explores to what degree missing links have already been acknowledged in the literature. We focused on process models as they can be regarded as repositories of scientific knowledge that compile findings of numerous single studies. In total, 118 simulation models from 23 model types were analysed. Missing processes linking different environmental compartments were identified based on a meta-review of 346 published reviews, model inter-comparison studies, and model descriptions. Eight disciplines of environmental sciences were considered and 396 linking processes were identified and ascribed to the physical, chemical or biological domain. There were significant differences between model types and scientific disciplines regarding implemented interdisciplinary links. The most wide-spread interdisciplinary links were between physical processes in meteorology, hydrology and soil science that drive or set the boundary conditions for other processes (e.g., ecological processes). In contrast, most chemical and biological processes were restricted to links within the same compartment. Integration of multiple environmental compartments and interdisciplinary knowledge was scarce in most model types. There was a strong bias of suggested future research foci and model extensions towards reinforcing existing interdisciplinary knowledge rather than to open up new interdisciplinary pathways. No clear pattern across disciplines exists with respect to suggested future research efforts. There is no evidence that environmental research would clearly converge towards more integrated approaches or towards an overarching environmental systems theory. (c) 2017 Elsevier B.V. All rights reserved. KW - Review KW - Interdisciplinary links KW - Integrated environmental modelling KW - Research needs Y1 - 2018 U6 - https://doi.org/10.1016/j.scitotenv.2017.12.007 SN - 0048-9697 SN - 1879-1026 VL - 622 SP - 954 EP - 973 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Ayzel, Georgy A1 - Izhitskiy, Alexander ED - Xu, Z Peng T1 - Coupling physically based and data-driven models for assessing freshwater inflow into the Small Aral Sea T2 - Innovative Water Resources Management in a Changing Environment – Understanding and Balancing Interactions between Humankind and Nature N2 - The Aral Sea desiccation and related changes in hydroclimatic conditions on a regional level is a hot topic for past decades. The key problem of scientific research projects devoted to an investigation of modern Aral Sea basin hydrological regime is its discontinuous nature - the only limited amount of papers takes into account the complex runoff formation system entirely. Addressing this challenge we have developed a continuous prediction system for assessing freshwater inflow into the Small Aral Sea based on coupling stack of hydrological and data-driven models. Results show a good prediction skill and approve the possibility to develop a valuable water assessment tool which utilizes the power of classical physically based and modern machine learning models both for territories with complex water management system and strong water-related data scarcity. The source code and data of the proposed system is available on a Github page (https://github.com/SMASHIproject/IWRM2018). Y1 - 2018 U6 - https://doi.org/10.5194/piahs-379-151-2018 SN - 2199-899X VL - 379 SP - 151 EP - 158 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Ayzel, Georgy V. T1 - Runoff predictions in ungauged arctic basins using conceptual models forced by reanalysis data JF - Water Resources N2 - Due to global warming, the problem of assessing water resources and their vulnerability to climate drivers in the Arctic region has become a focus in the recent years. This study is aimed at investigating three lumped hydrological models to predict daily runoff of large-scale Arctic basins in the case of substantial data scarcity. All models were driven only by meteorological forcing reanalysis dataset without any additional information about landscape, soil, or vegetation cover properties of the studied basins. Model parameter regionalization based on transferring the whole parameter set showed good efficiency for predictions in ungauged basins. We run a blind test of the proposed methodology for ensemble runoff predictions on five sub-basins, for which only monthly observations were available, and obtained promising results for current water resources assessment for a broad domain of ungauged basins in the Russian Arctic. KW - hydrologic modeling KW - runoff KW - ungauged basins KW - reanalysis KW - Arctic Y1 - 2018 U6 - https://doi.org/10.1134/S0097807818060180 SN - 0097-8078 SN - 1608-344X VL - 45 SP - S1 EP - S7 PB - Pleiades Publ. CY - New York ER - TY - JOUR A1 - Baes, Marzieh A1 - Sobolev, Stephan Vladimir A1 - Quinteros, Javier T1 - Subduction initiation in mid-ocean induced by mantle suction flow JF - Geophysical journal international N2 - Pre-existing weakness zones in the lithosphere such as transform faults/fracture zones and extinct mid-oceanic ridges have been suggested to facilitate subduction initiation in an intra-oceanic environment. Here, we propose that the additional forcing coming from the mantle suction flow is required to trigger the conversion of a fracture zone/transform fault into a converging plate boundary. This suction flow can be induced either from the slab remnants of former converging plate boundaries or/and from slabs of neighbouring active subduction zones. Using 2-D coupled thermo-mechanical models, we show that a sufficiently strong mantle flow is able to convert a fracture zone/transform fault into a subduction zone. However, this process is feasible only if the fracture zone/transform fault is very close to the mid-oceanic ridge. Our numerical model results indicate that time of subduction initiation depends on the velocity, domain size and location of mantle suction flow and age of the oceanic plate. KW - Numerical modelling KW - Subduction zone processes KW - oceanic transform and fracture zone processes Y1 - 2018 U6 - https://doi.org/10.1093/gji/ggy335 SN - 0956-540X SN - 1365-246X VL - 215 IS - 3 SP - 1515 EP - 1522 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Bai, Yongliang A1 - Dong, Dongdong A1 - Brune, Sascha A1 - Wu, Shiguo A1 - Wang, Zhenjie T1 - Crustal stretching style variations in the northern margin of the South China Sea JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - Linking deep seismic profiles with regional-scale gravity inversion is a powerful tool to deduce the architecture of rifted margins and their structural evolution. Here we map upper and lower crustal thicknesses of the northern South China Sea (SCS) margin in order to investigate the occurrence of depth-dependent crustal extension from the proximal to the distal margin. By comparing upper and lower crustal stretching factors, we find that the northern margin of the SCS is segmented in three parts: (1) sedimentary basins where upper crust is stretched more than lower crust, (2) distal margin where lower crust is stretched more than upper crust, (3) mostly proximal margin regions where the two layers have similar stretching factors. Our results suggest that sedimentary basins and distal margin prominently feature depth-dependent extension, however accommodated by different processes. While differential thinning within sedimentary basins appears to be governed by lateral pressure variations inducing lower crustal flow, we suggest the distal margin to be affected by a combination of mantle flow-induced lower crustal shearing and sequential fault activity during crustal hyper-extension. KW - Crustal stretching style KW - Lower crustal flow KW - The northern margin of the South China Sea KW - Gravity inversion KW - Sediment load KW - Divergent mantle flow Y1 - 2018 U6 - https://doi.org/10.1016/j.tecto.2018.12.012 SN - 0040-1951 SN - 1879-3266 VL - 751 SP - 1 EP - 12 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ballato, Paolo A1 - Parra, Mauricio A1 - Schildgen, Taylor F. A1 - Dunkl, I. A1 - Yildirim, C. A1 - Özsayin, Erman A1 - Sobel, Edward A1 - Echtler, H. A1 - Strecker, Manfred T1 - Multiple exhumation phases in the Central Pontides (N Turkey) BT - new temporal constraints on Major geodynamic changes associated with the closure of the Neo-Tethys Ocean JF - Tectonics N2 - The Central Pontides of N Turkey represents a mobile orogenic belt of the southern Eurasian margin that experienced several phases of exhumation associated with the consumption of different branches of the Neo-Tethys Ocean and the amalgamation of continental domains. Our new low-temperature thermochronology data help to constrain the timing of these episodes, providing new insights into associated geodynamic processes. In particular, our data suggest that exhumation occurred at (1) similar to 110 to 90Ma, most likely during tectonic accretion and exhumation of metamorphic rocks from the subduction zone; (2) from similar to 60 to 40Ma, during the collision of the Kirehir and Anatolide-Tauride microcontinental domains with the Eurasian margin; (3) from similar to 0 to 25Ma, either during the early stages of the Arabia-Eurasia collision (soft collision) when the Arabian passive margin reached the trench, implying 70 to 530km of subduction of the Arabian passive margin, or during a phase of trench advance predating hard collision at similar to 20Ma; and (4) similar to 11Ma to the present, during transpression associated with the westward motion of Anatolia. Our findings document the punctuated nature of fault-related exhumation, with episodes of fast cooling followed by periods of slow cooling or subsidence, the role of inverted normal faults in controlling the Paleogene exhumation pattern, and of the North Anatolian Fault in dictating the most recent pattern of exhumation. KW - thermal modeling KW - Central Pontides KW - Arabia-Eurasia collision KW - trench advance KW - Anatolia westward motion KW - inversion tectonics Y1 - 2018 U6 - https://doi.org/10.1029/2017TC004808 SN - 0278-7407 SN - 1944-9194 VL - 37 IS - 6 SP - 1831 EP - 1857 PB - American Geophysical Union CY - Washington ER -