TY - JOUR A1 - Rothkegel, Lars Oliver Martin A1 - Schütt, Heiko Herbert A1 - Trukenbrod, Hans Arne A1 - Wichmann, Felix A. A1 - Engbert, Ralf T1 - Searchers adjust their eye-movement dynamics to target characteristics in natural scenes JF - Scientific reports N2 - When searching a target in a natural scene, it has been shown that both the target’s visual properties and similarity to the background influence whether and how fast humans are able to find it. So far, it was unclear whether searchers adjust the dynamics of their eye movements (e.g., fixation durations, saccade amplitudes) to the target they search for. In our experiment, participants searched natural scenes for six artificial targets with different spatial frequency content throughout eight consecutive sessions. High-spatial frequency targets led to smaller saccade amplitudes and shorter fixation durations than low-spatial frequency targets if target identity was known. If a saccade was programmed in the same direction as the previous saccade, fixation durations and successive saccade amplitudes were not influenced by target type. Visual saliency and empirical fixation density at the endpoints of saccades which maintain direction were comparatively low, indicating that these saccades were less selective. Our results suggest that searchers adjust their eye movement dynamics to the search target efficiently, since previous research has shown that low-spatial frequencies are visible farther into the periphery than high-spatial frequencies. We interpret the saccade direction specificity of our effects as an underlying separation into a default scanning mechanism and a selective, target-dependent mechanism. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-018-37548-w SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Schwetlick, Lisa A1 - Trukenbrod, Hans Arne A1 - Engbert, Ralf T1 - The Influence of Visual Long Term Memory on Eye Movements During Scene Viewing T2 - Perception Y1 - 2019 SN - 0301-0066 SN - 1468-4233 VL - 48 IS - S1 SP - 138 EP - 138 PB - Sage Publ. CY - London ER - TY - JOUR A1 - Schütt, Heiko Herbert A1 - Rothkegel, Lars Oliver Martin A1 - Trukenbrod, Hans Arne A1 - Engbert, Ralf A1 - Wichmann, Felix A. T1 - Disentangling bottom-up versus top-down and low-level versus high-level influences on eye movements over time JF - Journal of vision N2 - Bottom-up and top-down as well as low-level and high-level factors influence where we fixate when viewing natural scenes. However, the importance of each of these factors and how they interact remains a matter of debate. Here, we disentangle these factors by analyzing their influence over time. For this purpose, we develop a saliency model that is based on the internal representation of a recent early spatial vision model to measure the low-level, bottom-up factor. To measure the influence of high-level, bottom-up features, we use a recent deep neural network-based saliency model. To account for top-down influences, we evaluate the models on two large data sets with different tasks: first, a memorization task and, second, a search task. Our results lend support to a separation of visual scene exploration into three phases: the first saccade, an initial guided exploration characterized by a gradual broadening of the fixation density, and a steady state that is reached after roughly 10 fixations. Saccade-target selection during the initial exploration and in the steady state is related to similar areas of interest, which are better predicted when including high-level features. In the search data set, fixation locations are determined predominantly by top-down processes. In contrast, the first fixation follows a different fixation density and contains a strong central fixation bias. Nonetheless, first fixations are guided strongly by image properties, and as early as 200 ms after image onset, fixations are better predicted by high-level information. We conclude that any low-level, bottom-up factors are mainly limited to the generation of the first saccade. All saccades are better explained when high-level features are considered, and later, this high-level, bottom-up control can be overruled by top-down influences. KW - saliency KW - fixations KW - natural scenes KW - visual search KW - eye movements Y1 - 2019 U6 - https://doi.org/10.1167/19.3.1 SN - 1534-7362 VL - 19 IS - 3 PB - Association for Research in Vision and Opthalmology CY - Rockville ER - TY - GEN A1 - Schütt, Heiko Herbert A1 - Rothkegel, Lars Oliver Martin A1 - Trukenbrod, Hans Arne A1 - Engbert, Ralf A1 - Wichmann, Felix A. T1 - Predicting fixation densities over time from early visual processing T2 - Perception N2 - Bottom-up saliency is often cited as a factor driving the choice of fixation locations of human observers, based on the (partial) success of saliency models to predict fixation densities in free viewing. However, these observations are only weak evidence for a causal role of bottom-up saliency in natural viewing behaviour. To test bottom-up saliency more directly, we analyse the performance of a number of saliency models---including our own saliency model based on our recently published model of early visual processing (Schütt & Wichmann, 2017, JoV)---as well as the theoretical limits for predictions over time. On free viewing data our model performs better than classical bottom-up saliency models, but worse than the current deep learning based saliency models incorporating higher-level information like knowledge about objects. However, on search data all saliency models perform worse than the optimal image independent prediction. We observe that the fixation density in free viewing is not stationary over time, but changes over the course of a trial. It starts with a pronounced central fixation bias on the first chosen fixation, which is nonetheless influenced by image content. Starting with the 2nd to 3rd fixation, the fixation density is already well predicted by later densities, but more concentrated. From there the fixation distribution broadens until it reaches a stationary distribution around the 10th fixation. Taken together these observations argue against bottom-up saliency as a mechanistic explanation for eye movement control after the initial orienting reaction in the first one to two saccades, although we confirm the predictive value of early visual representations for fixation locations. The fixation distribution is, first, not well described by any stationary density, second, is predicted better when including object information and, third, is badly predicted by any saliency model in a search task. Y1 - 2019 SN - 0301-0066 SN - 1468-4233 VL - 48 SP - 64 EP - 65 PB - Sage Publ. CY - London ER - TY - JOUR A1 - Trukenbrod, Hans Arne A1 - Barthelme, Simon A1 - Wichmann, Felix A. A1 - Engbert, Ralf T1 - Spatial statistics for gaze patterns in scene viewing BT - effects of repeated viewing JF - Journal of vision N2 - Scene viewing is used to study attentional selection in complex but still controlled environments. One of the main observations on eye movements during scene viewing is the inhomogeneous distribution of fixation locations: While some parts of an image are fixated by almost all observers and are inspected repeatedly by the same observer, other image parts remain unfixated by observers even after long exploration intervals. Here, we apply spatial point process methods to investigate the relationship between pairs of fixations. More precisely, we use the pair correlation function, a powerful statistical tool, to evaluate dependencies between fixation locations along individual scanpaths. We demonstrate that aggregation of fixation locations within 4 degrees is stronger than expected from chance. Furthermore, the pair correlation function reveals stronger aggregation of fixations when the same image is presented a second time. We use simulations of a dynamical model to show that a narrower spatial attentional span may explain differences in pair correlations between the first and the second inspection of the same image. KW - scene viewing KW - pair correlation function KW - spatial correlations Y1 - 2019 U6 - https://doi.org/10.1167/19.6.5 SN - 1534-7362 VL - 19 IS - 5 SP - 1 EP - 19 PB - Association for Research in Vision and Opthalmology CY - Rockville ER -