TY - JOUR A1 - Kornhuber, Kai A1 - Petoukhov, Vladimir A1 - Petri, Stefan A1 - Rahmstorf, Stefan A1 - Coumou, Dim T1 - Evidence for wave resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal summer JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - Several recent northern hemisphere summer extremes have been linked to persistent high-amplitude wave patterns (e.g. heat waves in Europe 2003, Russia 2010 and in the US 2011, Floods in Pakistan 2010 and Europe 2013). Recently quasi-resonant amplification (QRA) was proposed as a mechanism that, when certain dynamical conditions are fulfilled, can lead to such high-amplitude wave events. Based on these resonance conditions a detection scheme to scan reanalysis data for QRA events in boreal summer months was implemented. With this objective detection scheme we analyzed the occurrence and duration of QRA events and the associated atmospheric flow patterns in 1979-2015 reanalysis data. We detect a total number of 178 events for wave 6, 7 and 8 and find that during roughly one-third of all high amplitude events QRA conditions were met for respective waves. Our analysis reveals a significant shift for quasi-stationary waves 6 and 7 towards high amplitudes during QRA events, lagging first QRA-detection by typically one week. The results provide further evidence for the validity of the QRA hypothesis and its important role in generating high amplitude waves in boreal summer. KW - Rossby waves KW - Wave resonance KW - Atmospheric dynamics KW - Extreme weather Y1 - 2016 U6 - https://doi.org/10.1007/s00382-016-3399-6 SN - 0930-7575 SN - 1432-0894 VL - 49 SP - 1961 EP - 1979 PB - Springer CY - New York ER - TY - GEN A1 - Lenton, Timothy M. A1 - Rockstroem, Johan A1 - Gaffney, Owen A1 - Rahmstorf, Stefan A1 - Richardson, Katherine A1 - Steffen, Will A1 - Schellnhuber, Hans Joachim T1 - Climate tipping points - too risky to bet against : Comment T2 - Nature : the international weekly journal of science Y1 - 2019 U6 - https://doi.org/10.1038/d41586-019-03595-0 SN - 0028-0836 SN - 1476-4687 VL - 575 IS - 7784 SP - 592 EP - 595 PB - Nature Publ. Group CY - London ER -