TY - GEN A1 - Schwarte, Sandra A1 - Brust, Henrike A1 - Steup, Martin A1 - Tiedemann, Ralph T1 - Intraspecific sequence variation and differential expression in starch synthase genes of Arabidopsis thaliana T2 - BMC Research Notes N2 - Background Natural accessions of Arabidopsis thaliana are a well-known system to measure levels of intraspecific genetic variation. Leaf starch content correlates negatively with biomass. Starch is synthesized by the coordinated action of many (iso)enzymes. Quantitatively dominant is the repetitive transfer of glucosyl residues to the non-reducing ends of α-glucans as mediated by starch synthases. In the genome of A. thaliana, there are five classes of starch synthases, designated as soluble starch synthases (SSI, SSII, SSIII, and SSIV) and granule-bound synthase (GBSS). Each class is represented by a single gene. The five genes are homologous in functional domains due to their common origin, but have evolved individual features as well. Here, we analyze the extent of genetic variation in these fundamental protein classes as well as possible functional implications on transcript and protein levels. Findings Intraspecific sequence variation of the five starch synthases was determined by sequencing the entire loci including promoter regions from 30 worldwide distributed accessions of A. thaliana. In all genes, a considerable number of nucleotide polymorphisms was observed, both in non-coding and coding regions, and several amino acid substitutions were identified in functional domains. Furthermore, promoters possess numerous polymorphisms in potentially regulatory cis-acting regions. By realtime experiments performed with selected accessions, we demonstrate that DNA sequence divergence correlates with significant differences in transcript levels. Conclusions Except for AtSSII, all starch synthase classes clustered into two or three groups of haplotypes, respectively. Significant difference in transcript levels among haplotype clusters in AtSSIV provides evidence for cis-regulation. By contrast, no such correlation was found for AtSSI, AtSSII, AtSSIII, and AtGBSS, suggesting trans-regulation. The expression data presented here point to a regulation by common trans-regulatory transcription factors which ensures a coordinated action of the products of these four genes during starch granule biosynthesis. The apparent cis-regulation of AtSSIV might be related to its role in the initiation of de novo biosynthesis of granules. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 400 KW - Arabidopsis thaliana KW - starch synthases KW - genetic variation KW - transcript level Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401128 ER - TY - GEN A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - De Matthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea BT - the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea N2 - Introduction: We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Results: Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. Conclusions: We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 399 KW - Orchestia montagui KW - Talitrids KW - Mediterranean Sea KW - Phylogeography KW - Mitochondrial DNA KW - Microsatellites KW - Allozymes KW - Approximate Bayesian Computation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401110 ER - TY - JOUR A1 - Fiorentino, V. A1 - Manganelli, Giuseppe A1 - Giusti, Folco A1 - Tiedemann, Ralph A1 - Ketmaier, Valerino T1 - A question of time the land snail Murella muralis (Gastropoda: Pulmonata) reveals constraints on past ecological speciation JF - Molecular ecology N2 - The lively debate about speciation currently focuses on the relative importance of factors driving population differentiation. While many studies are increasingly producing results on the importance of selection, little is known about the interaction between drift and selection. Moreover, there is still little knowledge on the spatial-temporal scales at which speciation occurs, that is, arrangement of habitat patches, abruptness of habitat transitions, climate and habitat changes interacting with selective forces. To investigate these questions, we quantified variation on a fine geographical scale analysing morphological (shell) and genetic data sets coupled with environmental data in the land snail Murella muralis, endemic to the Mediterranean island of Sicily. Analysis of a fragment of the mitochondrial DNA cytochrome oxidase I gene (COI) and eight nuclear microsatellite loci showed that genetic variation is highly structured at a very fine spatial scale by local palaeogeographical events and historical population dynamics. Molecular clock estimates, calibrated here specifically for Tyrrhenian land snails, provided a framework of palaeogeographical events responsible for the observed geographical variations and migration routes. Finally, we showed for the first time well-documented lines of evidence of selection in the past, which explains divergence of land snail shell shapes. We suggest that time and palaeogeographical history acted as constraints in the progress along the ecological speciation continuum. Our study shows that testing for correlation among palaeogeography, morphology and genetic data on a fine geographical scale provides information fundamental for a detailed understanding of ecological speciation processes. KW - allopatry KW - cytochrome oxidase I gene KW - ecological speciation KW - land snails KW - microsatellites KW - Murella Y1 - 2013 U6 - https://doi.org/10.1111/mec.12107 SN - 0962-1083 SN - 1365-294X VL - 22 IS - 1 SP - 170 EP - 186 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Mahler, B. A1 - Schneider, A. R. R. A1 - Di Giacomo, A. S. A1 - Di Giacomo, A. G. A1 - Reboreda, Juan C. A1 - Tiedemann, Ralph T1 - Microsatellite usefulness is independent of phylogenetic distance in Tyrant flycatchers (Aves: Tyrannidae) - a test using two globally threatened species JF - Genetics and molecular research N2 - Tyrant flycatchers (Aves: Tyrannidae) are endemic to the New World, and many species of this group are threatened or near-threatened at the global level. The aim of this study was to test the 18 microsatellite markers that have been published for other Tyrant flycatchers in the Strange-tailed Tyrant (Alectrurus risora) and the Sharp-tailed Tyrant (Culicivora caudacuta), two endemic species of southern South American grasslands that are classified as vulnerable. We also analyzed the usefulness of loci in relation to phylogenetic distance to the source species. Amplification success was high in both species (77 to 83%) and did not differ between the more closely and more distantly related species to the source species. Polymorphism success was also similar for both species, with 9 and 8 loci being polymorphic, respectively. An increased phylogenetic distance thus does not gradually lead to allelic or locus dropouts, implying that in Tyrant flycatchers, the published loci are useful independent of species relatedness. KW - Alectrurus risora KW - Culicivora caudacuta KW - Microsatellites KW - Tyrannidae Y1 - 2013 U6 - https://doi.org/10.4238/2013.August.12.12 SN - 1676-5680 VL - 12 IS - 3 SP - 2966 EP - 2972 PB - FUNPEC CY - Ribeirao Preto ER - TY - JOUR A1 - Milinkovitch, Michel C. A1 - Kanitz, Ricardo A1 - Tiedemann, Ralph A1 - Tapia, Washington A1 - Llerena, Fausto A1 - Caccone, Adalgisa A1 - Gibbs, James P. A1 - Powell, Jeffrey R. T1 - Recovery of a nearly extinct Galapagos tortoise despite minimal genetic variation JF - Evolutionary applications N2 - A species of Galapagos tortoise endemic to Espanola Island was reduced to just 12 females and three males that have been bred in captivity since 1971 and have produced over 1700 offspring now repatriated to the island. Our molecular genetic analyses of juveniles repatriated to and surviving on the island indicate that none of the tortoises sampled in 1994 had hatched on the island versus 3% in 2004 and 24% in 2007, which demonstrates substantial and increasing reproduction in situ once again. This recovery occurred despite the parental population having an estimated effective population size <8 due to a combination of unequal reproductive success of the breeders and nonrandom mating in captivity. These results provide guidelines for adapting breeding regimes in the parental captive population and decreasing inbreeding in the repatriated population. Using simple morphological data scored on the sampled animals, we also show that a strongly heterogeneous distribution of tortoise sizes on Espanola Island observed today is due to a large variance in the number of animals included in yearly repatriation events performed in the last 40years. Our study reveals that, at least in the short run, some endangered species can recover dramatically despite a lack of genetic variation and irregular repatriation efforts. KW - captive populations KW - conservation biology KW - conservation genetics Y1 - 2013 U6 - https://doi.org/10.1111/eva.12014 SN - 1752-4571 VL - 6 IS - 2 SP - 377 EP - 383 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - De Matthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea - the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea JF - Frontiers in zoology N2 - Introduction: We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Results: Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. Conclusions: We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism. KW - Orchestia montagui KW - Talitrids KW - Mediterranean Sea KW - Phylogeography KW - Mitochondrial DNA KW - Microsatellites KW - Allozymes KW - Approximate Bayesian Computation Y1 - 2013 U6 - https://doi.org/10.1186/1742-9994-10-21 SN - 1742-9994 VL - 10 IS - 4-5 PB - BioMed Central CY - London ER - TY - JOUR A1 - Hill, Natascha A1 - Leow, Alexander A1 - Bleidorn, Christoph A1 - Groth, Detlef A1 - Tiedemann, Ralph A1 - Selbig, Joachim A1 - Hartmann, Stefanie T1 - Analysis of phylogenetic signal in protostomial intron patterns using Mutual Information JF - Theory in biosciences N2 - Many deep evolutionary divergences still remain unresolved, such as those among major taxa of the Lophotrochozoa. As alternative phylogenetic markers, the intron-exon structure of eukaryotic genomes and the patterns of absence and presence of spliceosomal introns appear to be promising. However, given the potential homoplasy of intron presence, the phylogenetic analysis of this data using standard evolutionary approaches has remained a challenge. Here, we used Mutual Information (MI) to estimate the phylogeny of Protostomia using gene structure data, and we compared these results with those obtained with Dollo Parsimony. Using full genome sequences from nine Metazoa, we identified 447 groups of orthologous sequences with 21,732 introns in 4,870 unique intron positions. We determined the shared absence and presence of introns in the corresponding sequence alignments and have made this data available in "IntronBase", a web-accessible and downloadable SQLite database. Our results obtained using Dollo Parsimony are obviously misled through systematic errors that arise from multiple intron loss events, but extensive filtering of data improved the quality of the estimated phylogenies. Mutual Information, in contrast, performs better with larger datasets, but at the same time it requires a complete data set, which is difficult to obtain for orthologs from a large number of taxa. Nevertheless, Mutual Information-based distances proved to be useful in analyzing this kind of data, also because the estimation of MI-based distances is independent of evolutionary models and therefore no pre-definitions of ancestral and derived character states are necessary. KW - Mutual Information KW - Evolution KW - Gene structure Y1 - 2013 U6 - https://doi.org/10.1007/s12064-012-0173-0 SN - 1431-7613 VL - 132 IS - 2 SP - 93 EP - 104 PB - Springer CY - New York ER - TY - JOUR A1 - Nahavandi, Nahid A1 - Ketmaier, Valerio A1 - Plath, Martin A1 - Tiedemann, Ralph T1 - Diversification of Ponto-Caspian aquatic fauna - morphology and molecules retrieve congruent evolutionary relationships in Pontogammarus maeoticus (Amphipoda: Pontogammaridae) JF - Molecular phylogenetics and evolution N2 - The geological history of the Ponto-Caspian region, with alternating cycles of isolation and reconnection among the three main basins (Black and Azov Seas, and the more distant Caspian Sea) as well as between them and the Mediterranean Sea, profoundly affected the diversification of its aquatic fauna, leading to a high degree of endemism. Two alternative hypotheses on the origin of this amazing biodiversity have been proposed, corresponding to phases of allopatric separation of aquatic fauna among sea basins: a Late Miocene origin (10-6 MYA) vs. a more recent Pleistocene ancestry (<2 MYA). Both hypotheses support a vicariant origin of (1) Black + Azov Sea lineages on the one hand, and (2) Caspian Sea lineages on the other. Here, we present a study on the Ponto-Caspian endemic amphipod Pontogammarus maeoticus. We assessed patterns of divergence based on (a) two mitochondrial and one nuclear gene, and (b) a morphometric analysis of 23 morphological traits in 16 populations from South and West Caspian Sea, South Azov Sea and North-West Black Sea. Genetic data indicate a long and independent evolutionary history, dating back from the late Miocene to early Pleistocene (6.6-1.6 MYA), for an unexpected, major split between (i) a Black Sea clade and (ii) a well-supported clade grouping individuals from the Caspian and Azov Seas. Absence of shared haplotypes argues against either recent or human-mediated exchanges between Caspian and Azov Seas. A mismatch distribution analysis supports more stable population demography in the Caspian than in the Black Sea populations. Morphological divergence largely followed patterns of genetic divergence: our analyses grouped samples according to the basin of origin and corroborated the close phylogenetic affinity between Caspian and Azov Sea lineages. Altogether, our results highlight the necessity of careful (group-specific) evaluation of evolutionary trajectories in marine taxa that should certainly not be inferred from the current geographical proximity of sea basins alone. (C) 2013 Elsevier Inc. All rights reserved. KW - Biodiversity hotspot KW - Black Sea KW - Caspian Sea KW - Paratethys KW - Sea of Azov KW - Vicariance Y1 - 2013 U6 - https://doi.org/10.1016/j.ympev.2013.05.021 SN - 1055-7903 SN - 1095-9513 VL - 69 IS - 3 SP - 1063 EP - 1076 PB - Elsevier CY - San Diego ER - TY - GEN A1 - Sammler, Svenja A1 - Ketmaier, Valerio A1 - Havenstein, Katja A1 - Tiedemann, Ralph T1 - Intraspecific rearrangement of duplicated mitochondrial control regions in the luzon tarictic hornbill penelopides manillae (Aves: Bucerotidae) T2 - Journal of molecular evolution N2 - Philippine hornbills of the genera Aceros and Penelopides (Bucerotidae) are known to possess a large tandemly duplicated fragment in their mitochondrial genome, whose paralogous parts largely evolve in concert. In the present study, we surveyed the two distinguishable duplicated control regions in several individuals of the Luzon Tarictic Hornbill Penelopides manillae, compare their characteristics within and across individuals, and report on an intraspecific mitochondrial gene rearrangement found in one single specimen, i.e., an interchange between the two control regions. To our knowledge, this is the first observation of two distinct mitochondrial genome rearrangements within a bird species. We briefly discuss a possible evolutionary mechanism responsible for this pattern, and highlight potential implications for the application of control region sequences as a marker in population genetics and phylogeography. KW - Bucerotidae KW - Concerted evolution KW - Control region KW - Mitochondrial gene order KW - Mitochondrial recombination KW - Philippine archipelago Y1 - 2013 U6 - https://doi.org/10.1007/s00239-013-9591-y SN - 0022-2844 SN - 1432-1432 VL - 77 IS - 5-6 SP - 199 EP - 205 PB - Springer CY - New York ER - TY - JOUR A1 - Schwarte, Sandra A1 - Brust, Henrike A1 - Steup, Martin A1 - Tiedemann, Ralph T1 - Intraspecific sequence variation and differential expression in starch synthase genes of Arabidopsis thaliana Y1 - 2013 UR - http://www.biomedcentral.com/content/pdf/1756-0500-6-84.pdf U6 - https://doi.org/10.1186/1756-0500-6-84 ER - TY - JOUR A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - DeMatthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea: the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea Y1 - 2013 UR - 1960 = DOI: 10.1186/1742-9994-10-21 SN - 1742-9994 ER -