TY - THES A1 - Wolf, Mathias Johannes T1 - The role of partial melting on trace element and isotope systematics of granitic melts T1 - Die Bedeutung partieller Schmelzbildung für die Spurenelement- und Isotopensystematik granitischer Schmelzen N2 - Partial melting is a first order process for the chemical differentiation of the crust (Vielzeuf et al., 1990). Redistribution of chemical elements during melt generation crucially influences the composition of the lower and upper crust and provides a mechanism to concentrate and transport chemical elements that may also be of economic interest. Understanding of the diverse processes and their controlling factors is therefore not only of scientific interest but also of high economic importance to cover the demand for rare metals. The redistribution of major and trace elements during partial melting represents a central step for the understanding how granite-bound mineralization develops (Hedenquist and Lowenstern, 1994). The partial melt generation and mobilization of ore elements (e.g. Sn, W, Nb, Ta) into the melt depends on the composition of the sedimentary source and melting conditions. Distinct source rocks have different compositions reflecting their deposition and alteration histories. This specific chemical “memory” results in different mineral assemblages and melting reactions for different protolith compositions during prograde metamorphism (Brown and Fyfe, 1970; Thompson, 1982; Vielzeuf and Holloway, 1988). These factors do not only exert an important influence on the distribution of chemical elements during melt generation, they also influence the volume of melt that is produced, extraction of the melt from its source, and its ascent through the crust (Le Breton and Thompson, 1988). On a larger scale, protolith distribution and chemical alteration (weathering), prograde metamorphism with partial melting, melt extraction, and granite emplacement are ultimately depending on a (plate-)tectonic control (Romer and Kroner, 2016). Comprehension of the individual stages and their interaction is crucial in understanding how granite-related mineralization forms, thereby allowing estimation of the mineralization potential of certain areas. Partial melting also influences the isotope systematics of melt and restite. Radiogenic and stable isotopes of magmatic rocks are commonly used to trace back the source of intrusions or to quantify mixing of magmas from different sources with distinct isotopic signatures (DePaolo and Wasserburg, 1979; Lesher, 1990; Chappell, 1996). These applications are based on the fundamental requirement that the isotopic signature in the melt reflects that of the bulk source from which it is derived. Different minerals in a protolith may have isotopic compositions of radiogenic isotopes that deviate from their whole rock signature (Ayres and Harris, 1997; Knesel and Davidson, 2002). In particular, old minerals with a distinct parent-to-daughter (P/D) ratio are expected to have a specific radiogenic isotope signature. As the partial melting reaction only involves selective phases in a protolith, the isotopic signature of the melt reflects that of the minerals involved in the melting reaction and, therefore, should be different from the bulk source signature. Similar considerations hold true for stable isotopes. N2 - Partielle Schmelzbildung ist ein zentraler Prozess für die geochemische Differentiation der Erdkruste (Vielzeuf et al., 1990). Die Umverteilung chemischer Elemente während der Schmelzbildung beeinflusst die Zusammensetzung der oberen und unteren Erdkruste entscheidend und stellt einen Mechanismus zur Konzentration und zum Transport chemischer Elemente dar. Das Verständnis der diversen Prozesse und der kontrollierenden Faktoren ist deshalb nicht nur von wissenschaftlichem Interesse sondern auch von ökonomischer Bedeutung um die Nachfrage für seltene Metalle zu decken. Die Umverteilung von Haupt- und Spurenelementen während des partiellen Aufschmelzens ist ein entscheidender Schritt für das Verständnis wie sich granitgebundene Lagerstätten bilden (Hedenquist and Lowenstern, 1994). Die Schmelzbildung und die Mobilisierung von Erz-Elementen (z. B. Sn, W, Nb, Ta) in die Schmelze hängt von der Zusammensetzung der sedimentären Ausgangsgesteine und den Schmelzbedingungen ab. Verschiedene Ausgangsgesteine haben aufgrund ihrer Ablagerungs- und Verwitterungsgeschichte unterschiedliche Zusammensetzungen. Dieses spezifische geochemische „Gedächtnis“ resultiert in unterschiedlichen Mineralparagenesen und Schmelzreaktionen in verschiedenen Ausgangsgesteinen während der prograden Metamorphose. (Brown and Fyfe, 1970; Thompson, 1982; Vielzeuf and Holloway, 1988). Diese Faktoren haben nicht nur einen wichtigen Einfluss auf die Verteilung chemischer Elemente während der Schmelzbildung, sie beeinflussen auch das Volumen an Schmelze, die Extraktion der Schmelze aus dem Ausgangsgestein und deren Aufstieg durch die Erdkruste (Le Breton and Thompson, 1988). Auf einer grösseren Skala unterliegen die Verteilung der Ausgangsgesteine und deren chemische Alteration (Verwitterung), die prograde Metamorphose mit partieller Schmelzbildung, Schmelzextraktion und die Platznahme granitischer Intrusionen einer plattentektonischen Kontrolle. Das Verständnis der einzelnen Schritte und deren Wechselwirkungen ist entscheidend um zu verstehen wie granitgebunden Lagerstätten entstehen und erlaubt es, das Mineralisierungspotential bestimmter Gebiete abzuschätzen. Partielles Aufschmelzen beeinflusst auch die Isotopensystematik der Schmelze und des Restites. Die Zusammensetzungen radiogener und stabiler Isotopen von magmatischen Gesteinen werden im Allgemeinen dazu verwendet um deren Ursprungsgesteine zu identifizieren oder um Mischungsprozesses von Magmen unterschiedlichen Ursprunges zu quantifizieren (DePaolo and Wasserburg, 1979; Lesher, 1990; Chappell, 1996). Diese Anwendungen basieren auf der fundamentalen Annahme, dass die Isotopenzusammensetzung der Schmelze derjenigen des Ausgangsgesteines entspricht. Unterschiedliche Minerale in einem Gestein können unterschiedliche, vom Gesamtgestein abweichende, Isotopenzusammensetzungen haben (Ayres and Harris, 1997; Knesel and Davidson, 2002). Insbesondere für alte Minerale, mit einem unterschiedlichen Mutter-Tochter Nuklidverhältnis, ist eine spezifische Isotopenzusammensetzung zu erwarten. Da im partiellen Schmelzprozess nur bestimmte Minerale eines Gesteines involviert sind, entspricht die Isotopenzusammensetzung der Schmelze derjenigen der Minerale welche an der Schmelzreaktion teilnehmen. Daher sollte die Isotopenzusammensetzung der Schmelze von derjenigen des Ursprungsgesteines abweichen. Ähnliche Überlegungen treffen auch für stabile Isotopen zu. KW - geochemistry KW - trace elements KW - radiogenic isotopes KW - stable isotopes KW - resources KW - Sn Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423702 ER - TY - THES A1 - Herrmann, Johannes T1 - The mechanical behavior of shales T1 - Das mechanische Verhalten von Schiefergesteinen N2 - The thesis comprises three experimental studies, which were carried out to unravel the short- as well as the long-term mechanical properties of shale rocks. Short-term mechanical properties such as compressive strength and Young’s modulus were taken from recorded stress-strain curves of constant strain rate tests. Long-term mechanical properties are represented by the time– dependent creep behavior of shales. This was obtained from constant stress experiments, where the test duration ranged from a couple minutes up to two weeks. A profound knowledge of the mechanical behavior of shales is crucial to reliably estimate the potential of a shale reservoir for an economical and sustainable extraction of hydrocarbons (HC). In addition, healing of clay-rich forming cap rocks involving creep and compaction is important for underground storage of carbon dioxide and nuclear waste. Chapter 1 introduces general aspects of the research topic at hand and highlights the motivation for conducting this study. At present, a shift from energy recovered from conventional resources e.g., coal towards energy provided by renewable resources such as wind or water is a big challenge. Gas recovered from unconventional reservoirs (shale plays) is considered a potential bridge technology. In Chapter 2, short-term mechanical properties of two European mature shale rocks are presented, which were determined from constant strain rate experiments performed at ambient and in situ deformation conditions (confining pressure, pc ≤ 100 MPa, temperature, T ≤ 125 °C, representing pc, T - conditions at < 4 km depth) using a Paterson– type gas deformation apparatus. The investigated shales were mainly from drill core material of Posidonia (Germany) shale and weathered material of Bowland (United Kingdom) shale. The results are compared with mechanical properties of North American shales. Triaxial compression tests performed perpendicular to bedding revealed semibrittle deformation behavior of Posidonia shale with pronounced inelastic deformation. This is in contrast to Bowland shale samples that deformed brittle and displayed predominantly elastic deformation. The static Young’s modulus, E, and triaxial compressive strength, σTCS, determined from recorded stress-strain curves strongly depended on the applied confining pressure and sample composition, whereas the influence of temperature and strain rate on E and σTCS was minor. Shales with larger amounts of weak minerals (clay, mica, total organic carbon) yielded decreasing E and σTCS. This may be related to a shift from deformation supported by a load-bearing framework of hard phases (e.g., quartz) towards deformation of interconnected weak minerals, particularly for higher fractions of about 25 – 30 vol% weak phases. Comparing mechanical properties determined at reservoir conditions with mechanical data applying effective medium theories revealed that E and σTCS of Posidonia and Bowland shale are close to the lower (Reuss) bound. Brittleness B is often quoted as a measure indicating the response of a shale formation to stimulation and economic production. The brittleness, B, of Posidonia and Bowland shale, estimated from E, is in good agreement with the experimental results. This correlation may be useful to predict B from sonic logs, from which the (dynamic) Young’s modulus can be retrieved. Chapter 3 presents a study of the long-term creep properties of an immature Posidonia shale. Constant stress experiments (σ = const.) were performed at elevated confining pressures (pc = 50 – 200 MPa) and temperatures (T = 50 – 200 °C) to simulate reservoir pc, T - conditions. The Posidonia shale samples were acquired from a quarry in South Germany. At stresses below ≈ 84 % compressive strength of Posidonia shale, at high temperature and low confining pressure, samples showed pronounced transient (primary) creep with high deformation rates in the semibrittle regime. Sample deformation was mainly accommodated by creep of weak sample constituents and pore space reduction. An empirical power law relation between strain and time, which also accounts for the influence of pc, T and σ on creep strain was formulated to describe the primary creep phase. Extrapolation of the results to a creep period of several years, which is the typical time interval for a large production decline, suggest that fracture closure is unlikely at low stresses. At high stresses as expected for example at the contact between the fracture surfaces and proppants added during stimulation measures, subcritical crack growth may lead to secondary and tertiary creep. An empirical power law is suggested to describe secondary creep of shale rocks as a function of stress, pressure and temperature. The predicted closure rates agree with typical production decline curves recorded during the extraction of hydrocarbons. At the investigated conditions, the creep behavior of Posidonia shale was found to correlate with brittleness, calculated from sample composition. In Chapter 4 the creep properties of mature Posidonia and Bowland shales are presented. The observed long-term creep behavior is compared to the short-term behavior determined in Chapter 2. Creep experiments were performed at simulated reservoir conditions of pc = 50 – 115 MPa and T = 75 – 150 °C. Similar to the mechanical response of immature Posidonia shale samples investigated in Chapter 3, creep strain rates of mature Bowland and Posidonia shales were enhanced with increasing stress and temperature and decreasing confining pressures. Depending on applied deformation conditions, samples displayed either only a primary (decelerating) or in addition also a secondary (quasi-steady state) and subsequently a tertiary (accelerating) creep phase before failure. At the same deformation conditions, creep strain of Posidonia shale, which is rich in weak constituents, is tremendously higher than of quartz-rich Bowland shale. Typically, primary creep strain is again mostly accommodated by deformation of weak minerals and local pore space reduction. At the onset of tertiary creep most of the deformation was accommodated by micro crack growth. A power law was used to characterize the primary creep phase of Posidonia and Bowland shale. Primary creep strain of shale rocks is inversely correlated to triaxial compressive strength and brittleness, as described in Chapter 2. Chapter 5 provides a synthesis of the experimental findings and summarizes the major results of the studies presented in Chapters 2 – 4 and potential applications in the Exploration & Production industry. Chapter 6 gives a brief outlook on potential future experimental research that would help to further improve our understanding of processes leading to fracture closure involving proppant embedment in unconventional shale gas reservoirs. Such insights may allow to improve stimulation techniques aimed at maintaining economical extraction of hydrocarbons over several years. N2 - Die vorliegende Dissertation befasst sich mit drei separaten, experimentellen Studien, die durchgeführt wurden, um die mechanischen Eigenschaften, wie Druckfestigkeit, Elastizitätsmodul und Langzeit-Kriecheigenschaften von Schiefergesteinen zu untersuchen. Dabei wurden die aufgezeichneten Spannungs-Verformungskurven von kurzzeitigen (wenige Minuten) Deformationsexperimenten bei konstanter Verformungsrate genutzt, um mechanische Druckfestigkeit und elastische Parameter zu bestimmen. Um die zeitabhängigen Kriecheigenschaften zu charakterisieren, wurden Deformationstests bei konstanter Spannung durchgeführt. Hier variierte die Testdauer zwischen wenigen Minuten und zwei Wochen. Ein verbesserter Kenntnisstand auf diesem Gebiet ist notwendig, um das Potential eines unkonventionellen Schiefergesteinsreservoirs im Hinblick auf eine wirtschaftliche und nachhaltige Förderung von Kohlenwasserstoffen zuverlässig abzuschätzen. Im ersten Kapitel wird eine allgemeine Einleitung in das Thema der Dissertation gegeben, wobei im Besonderen auf die Motivation für die vorliegende Studie eingegangen wird. Die Einleitung fokussiert sich dabei auf die aktuell vorherrschende Herausforderung, die Energieversorgung durch konventionelle Ressourcen, wie beispielsweise Kohle, durch regenerative Ressourcen, wie z.B. Wind oder Wasser, zu ersetzen. Üblicherweise wird der Energiezeugung aus unkonventionell gewonnenem Erdgas dabei die Rolle einer Brückentechnologie zugewiesen. Die Motivation zur Durchführung dieser Arbeit ist es, das mechanische Verhalten von Gasschiefern zu untersuchen, die auch in Europa einen substantiellen Beitrag zur Gasförderung liefern können. In Kapitel 2 werden die Ergebnisse von Experimenten dargestellt, die exemplarisch auf die Bestimmung der Druckfestigkeit und des Elastizitätsmoduls von zwei reifen, europäischen Schiefergesteinen abzielen. Dazu wurden in einer Gasdruckapparatur Deformationsexperimente an Proben durchgeführt die senkrecht zur Schichtung orientiert entnommen wurden. Die Versuche wurden bei konstanter Verformungsrate und bei nachgestellten in situ Umgebungsbedingungen bis etwa 4 km Tiefe durchgeführt (Manteldruck, pc ≤ 100 MPa, Temperatur, T ≤ 125 °C). Die untersuchten Schieferproben stammen hauptsächlich aus Kernmaterial von erbohrtem Posidonienschiefer aus Niedersachsen und aus englischen Bowlandschiefer, das aus natürlichen Aufschlüssen gewonnen wurde. Zusätzlich wurden einige nordamerikanische Schieferproben zum Vergleich untersucht. Die triaxialen Kompressionstests zeigen ein semi-sprödes Deformationsverhalten mit ausgeprägter inelastischer Verformung des untersuchten Posidonienschiefers, wohingegen sich Bowlandschiefer spröde und bis zum Bruch vorzugsweise elastisch verformt. Der Elastizitätsmodul, E, und die Druckfestigkeit, σTCS, weisen bei erhöhten Drücken und Temperaturen eine starke Abhängigkeit vom Manteldruck und der Gesteinsmineralogie auf. Der Einfluss von Temperatur und Verformungsrate auf E und σTCS ist dagegen vernachlässigbar. Mit ansteigendem Anteil an mechanisch weichen Mineralphasen, z.B. Ton, Glimmer und organisch gebundenem Kohlenstoff, nehmen E und σTCS der untersuchten Schiefergesteine ab. Dies ist durch eine verändertes Verformungsverhalten begründet, das von der Deformation eines lasttragenden Gerüstes aus mechanisch festen Mineralen, wie beispielsweise Quarz, bis zu einer Verformung von miteinander verbundenen mechanisch weichen Mineralen reicht. Der Übergang wurde ab einem Volumenanteil von etwa 25 – 30 vol% weicher Mineralphasen beobachtet. Beim Vergleich der experimentell ermittelten mechanischen Eigenschaften (E, σTCS) mit Vorhersagen, in denen die Zusammensetzung der Schiefer berücksichtigt wird (effective medium theories, Voigt-Reuss Grenzen) ist erkennbar, dass E und σTCS nahe an der unteren (Reuss) Grenze liegen. Die aus dem Elastizitätsmodul berechnete Sprödfestigkeit (brittleness, B) von Posidonien- und Bowlandschiefer stimmt gut mit dem gemessenen Spannungs-Verformungsverhalten überein. Die Sprödfestigkeit eines Gesteins wird oft als Indiz zur Abschätzung des möglichen Erfolges von Stimulationsmaßnahmen betrachtet. Daher ist der Zusammenhang zwischen elastischen Eigenschaften, die sich mit Ultraschallmessungen (sonic-log) in Bohrungen abschätzen lassen und dem mechanischen Verhalten von Gasschiefern für eine schnelle und kostengünstige Beurteilung wichtig. Im dritten Kapitel werden die Langzeit-Kriecheigenschaften von Schiefergesteinen untersucht. Dafür wurden Deformationsexperimente bei konstanter Spannung (σ = konst.) und erhöhten Umlagerungsdrücken (pc = 50 – 200 MPa) und Temperaturen (T = 50 – 200 °C) an einem unreifen Posidonienschiefer, welcher in einem aktiven Steinbruch in Süddeutschland gewonnen wurde, durchgeführt. Bei Spannungen unterhalb ≈ 84 % der Druckfestigkeit des Schiefers und hohen Temperaturen und niedrigen Manteldrücken zeigen die deformierten Schieferproben transientes (primäres) Kriechen im semi-spröden Regime mit relativ hohen Verformungsraten. Der größte Teil der Deformation wird dabei durch die Verformung von mechanisch weichen Mineralphasen und Porenraumreduktion aufgenommen. Ein empirisches Potenzgesetz wurde aufgestellt, um die zeitabhängige primäre Kriechphase in Abhängigkeit von Manteldruck, Temperatur und Spannung zu charakterisieren. Dabei wurde festgestellt, dass ein mögliches Rissschließen über einen typischen Zeitraum von wenigen Jahren bei der Annahme von ausschließlich primären Kriechen unwahrscheinlich ist. Typischerweise entstehen an den Kotaktflächen zwischen hydraulisch stimulierten Rissen innerhalb der Schieferformation und dem Stützmittel, welches dem Stimulationsfluid hinzugefügt wird, um offene Risse aufrecht zu erhalten, hohe Differentialspannungen. Dadurch kann zusätzliches (subkritisches) Risswachstum initiiert werden, welches bei den untersuchten Proben unter hoher Differentialspannung zusätzlich zum primären auch zum sekundären und tertiären Kriechen bis zum Versagen der Probe führte. Bei Verwendung eines empirischen Potenzgesetzes zur Beschreibung der sekundären Kriechphase kann eine, im Vergleich zur primären Kriechregime, substanziell höhere Rissschließungsrate abgeschätzt werden. Diese erscheint wesentlich zuverlässiger, da sie mit den Zeiträumen typische gemessener Produktionsrückgänge einer Bohrung übereinstimmt. Zusätzlich wurde eine inverse Korrelation zwischen gemessener Verformung und Sprödigkeit, basierend auf der Schiefermineralogie, festgestellt. In Kapitel 4 werden weiterführende Untersuchungen vorgestellt, in dem die Kriecheigenschaften von reifem Posidonien-und Bowlandschiefer gemessen und mit den mechanischen Eigenschaften, bestimmt in Kurzzeit-Deformationsversuchen bei konstanter Verformungsrate (Kapitel 2) verglichen werden. Dafür wurden Kriechversuche an Posidonien- und Bowlandschiefermaterial, wie in Kapitel 2 beschrieben, bei simulierten Reservoirdrücken und -temperaturen durchgeführt (pc = 50 – 115 MPa, T = 75 – 150 °C). Auch für diese Schiefergesteine wurde eine erhöhte Verformung bei erhöhten Spannungen und Temperaturen und niedrigen Manteldrücken gemessen. In Abhängigkeit von den vorherrschenden Deformationsbedingungen wiesen die Proben beider Schiefergesteine entweder nur eine primäre oder zusätzlichen zur primären auch eine sekundäre und tertiäre Kriechphase auf. Bei gleichem Umlagerungsdruck und gleicher Temperatur erwies sich der tonreiche Posidonienschiefer als deutlich weniger fest als der quarzreiche Bowlandschiefer. Während der Großteil der Deformation in der primären Kriechphase durch die Verformung von weichen Mineralen und Porenraumreduktion aufgefangen wurde, ist eine Mikrorissbildung bezeichnend für das tertiäre Kriechen. Um das primäre Kriechverhalten der unterschiedlichen Schiefergesteine zu charakterisieren, wurde auch hier ein Potenzgesetz genutzt, welches einen Vergleich mit den Kriecheigenschaften anderer Schiefergesteinen erlaubt. Die gewonnenen Ergebnisse zeigen eine deutliche inverse Korrelation zwischen primärer Verformung und der gemessenen Druckfestigkeit und der berechneten Sprödigkeit. Dies ermöglicht es die Langzeit-Kriecheigenschaften von Schiefergesteinen mit den, aus einem Kurzzeittest gemessenen, mechanischen Eigenschaften grob abzuschätzen, solange die angenommen Zeitintervalle zwischen zwei Stimulationsoperationen in dem in der Praxis typischen Zeitintervall von einigen Jahren liegt. Im fünften Kapitel werden die erzielten Ergebnisse nochmals im Zusammenhang dargestellt. Hier wird im Besonderen auf eine potentielle Anwendung der Ergebnisse in der E & P - Industrie eingegangen. Abschließend wird im sechsten Kapitel auf mögliche Experimente eingegangen, die zukünftig durchgeführt werden könnten, um unser Verständnis in Bezug auf die spannungsinduzierte Rissschließung in Schieferlagerstätten durch die Einbettung der Stützmittel in die Formation zu verbessern. Diese Erkenntnisse wären wiederum hilfreich, um eine ökonomische und nachhaltige Förderung von Kohlenwasserstoffen von stimulierten Bohrungen zu gewährleisten, die in unkonventionelle Lagerstätten abgeteuft wurden. KW - strength KW - Young's modulus KW - creep properties KW - Festigkeit KW - Elastizitätsmodul KW - Kriecheigenschaften Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429683 ER - TY - THES A1 - Kriegerowski, Marius T1 - Development of waveform-based, automatic analysis tools for the spatio-temporal characterization of massive earthquake clusters and swarms N2 - Earthquake swarms are characterized by large numbers of events occurring in a short period of time within a confined source volume and without significant mainshock aftershock pattern as opposed to tectonic sequences. Intraplate swarms in the absence of active volcanism usually occur in continental rifts as for example in the Eger Rift zone in North West Bohemia, Czech Republic. A common hypothesis links event triggering to pressurized fluids. However, the exact causal chain is often poorly understood since the underlying geotectonic processes are slow compared to tectonic sequences. The high event rate during active periods challenges standard seismological routines as these are often designed for single events and therefore costly in terms of human resources when working with phase picks or computationally costly when exploiting full waveforms. This methodological thesis develops new approaches to analyze earthquake swarm seismicity as well as the underlying seismogenic volume. It focuses on the region of North West (NW) Bohemia, a well studied, well monitored earthquake swarm region. In this work I develop and test an innovative approach to detect and locate earthquakes using deep convolutional neural networks. This technology offers great potential as it allows to efficiently process large amounts of data which becomes increasingly important given that seismological data storage grows at increasing pace. The proposed deep neural network trained on NW Bohemian earthquake swarm records is able to locate 1000 events in less than 1 second using full waveforms while approaching precision of double difference relocated catalogs. A further technological novelty is that the trained filters of the deep neural network’s first layer can be repurposed to function as a pattern matching event detector without additional training on noise datasets. For further methodological development and benchmarking, I present a new toolbox to generate realistic earthquake cluster catalogs as well as synthetic full waveforms of those clusters in an automated fashion. The input is parameterized using constraints on source volume geometry, nucleation and frequency-magnitude relations. It harnesses recorded noise to produce highly realistic synthetic data for benchmarking and development. This tool is used to study and assess detection performance in terms of magnitude of completeness Mc of a full waveform detector applied to synthetic data of a hydrofracturing experiment at the Wysin site, Poland. Finally, I present and demonstrate a novel approach to overcome the masking effects of wave propagation between earthquake and stations and to determine source volume attenuation directly in the source volume where clustered earthquakes occur. The new event couple spectral ratio approach exploits high frequency spectral slopes of two events sharing the greater part of their rays. Synthetic tests based on the toolbox mentioned before show that this method is able to infer seismic wave attenuation within the source volume at high spatial resolution. Furthermore, it is independent from the distance towards a station as well as the complexity of the attenuation and velocity structure outside of the source volume of swarms. The application to recordings of the NW Bohemian earthquake swarm shows increased P phase attenuation within the source volume (Qp < 100) based on results at a station located close to the village Luby (LBC). The recordings of a station located in epicentral proximity, close to Nový Kostel (NKC), show a relatively high complexity indicating that waves arriving at that station experience more scattering than signals recorded at other stations. The high level of complexity destabilizes the inversion. Therefore, the Q estimate at NKC is not reliable and an independent proof of the high attenuation finding given the geometrical and frequency constraints is still to be done. However, a high attenuation in the source volume of NW Bohemian swarms has been postulated before in relation to an expected, highly damaged zone bearing CO 2 at high pressure. The methods developed in the course of this thesis yield the potential to improve our understanding regarding the role of fluids and gases in intraplate event clustering. N2 - Erdbebenschwärme zeichnen sich durch eine große Anzahl an Ereignissen in einem relativ kleinen Zeitraum und Volumen aus. Im Gegensatz zu tektonischen Sequenzen ist in der Regel keine signifikantes Muster von Vor- und Nachbeben erkennbar. In Abwesenheit aktiven Vulkanismusses, kommen Erdbebenschwärme innerhalb kontinentaler Platten häufg an kontinentalen Verwerfungen vor, wie Beispielsweise im Bereich des Egergrabens im nordböhmischen Becken (Tschechien). Eine übliche Hypothese verbindet den Erdbebenentstehungsprozess mit Hochdruckfluiden. Der exakte kausale Zusammenhang ist jedoch häufig enigmatisch, da die zugrundeliegenden geotektonischen Prozesse im Vergleich zu tektonischen Sequenzen relativ langsam sind. Die hohe Erdbebenrate während aktiver Phasen stellt hohe Anforderungen an etablierte seismologische Routinen da diese häufg für Einzelereignisse konzipiert sind. So können sie einen hohen Aufwand bei manueller Selektion seismischer Phasen (picking) bedeuten oder rechenerisch aufwändig sein wenn volle Wellenformen verarbeitet werden sollen. Im Rahmen dieser methodologischen Thesis werden neue Ansätze zur Analyse seismischer Schwärme, sowie des zugrundeliegenden seismogenen Volumens entwickelt. Der Fokus liegt hierbei auf der gut untersuchten und überwachten nordböhmischen Schwarmregion. Ich entwickle und teste in dieser Arbeit einen innovativen Ansatz zur Detektion und Lokalisation von Erdbeben basierend auf einem tiefen konvolvierenden neuronalen Netzwerk. Diese Technologie bietet großes Potential da sie es erlaubt große Datenmengen effizient zu verarbeiten was durch die zunehmenden Datenmengen seismologischer Datenzentren immer weiter an Bedeutung gewinnt. Das entwickelte tiefe neuronale Netzwerk, trainiert auf Aufnahmen nordböhmischer Erdbebenschwärme, ist in der Lage 1000 Eregnisse in weniger als 1 Sekunde bei Verwendung voller Wellenformen zu lokalisieren und erreicht eine Präzision die vergleichbar ist mit der Genauigkeit eines Katalogs, der mittels Doppelte Differenzen Methode relokalisiert wurde. Eine weitere technologische Neuheit ist, dass die trainierten Filter der ersten Schicht des tiefen neuronalen Netzwerkes als Mustererkennungsfilter umfunktioniert werden und damit als Ereignisdetektor dienen können, ohne, dass zuvor explizit auf Rauschdaten trainiert werden muss. Für die weitere technologische Entwicklung stelle ich ein neues, automatisiertes Werkzeug für die synthetisierung realistischer Erdbebenschwarmkataloge, sowie hierauf basierender synthetischer voller Wollenform vor. Die Eingabeparameter werden durch die Geometrie des Quellvolumens, der Nukleationscharakteristik und Magnitude-Häufigkeitsverteilung definiert. Weiter können Rauschsignale realer Daten verwendet werden um äußerst realistische synthetische Daten zu generieren. Dieses Werkzeug wird verwendet um die Vollständigkeitmagnitude eines Detektors für volle Wellenformen anhand synthetischer Daten zu evaluieren. Die synthetisierten Daten sind Motiviert durch ein Hydrofrackingexperiment in Wysin (Polen). Des Weiteren stelle ich einen neuen Ansatz vor, der die Effekte der Wellenausbreitung zwischen Erdbeben und Stationen ausblendet und die Bestimmung der Dämpfung unmittelbar im Quellvolumen von Schwarmerdbeben erlaubt. Diese neue Methode benutzt das hochfrequente spektrale Verhältnis von Ereignispaaren mit gemeinsamen Strahlenwegen. Synthetische Tests zeigen, dass die Methode in der Lage ist die Dämpfung innerhalb des Quellvolumens mit hoher räumlicher Genauigkeit zu bestimmen. Weiter ist sie im Einzelnen unabhängig von der Entfernung zwischen Ereignis und Station als auch von der Komplexität der Dämpfungs und Geschwindigkeitsstruktur außerhalb des Quellvolumens. Die Anwendung auf Daten des nordböhmischen Erdbebenschwarms zeigt eine erhöhte P Phasen Dämpfung im Quellvolumen (Qp < 100) basierend auf Daten einer Station in der Nähe des Dorfes Luby (LBC). Die Wellenformen einer Station in unmittelbarer epizentraler Nähe, bei Novy Kostel (NKC), weisen eine relativ hohe Komplexität auf, was darauf hindeutet, dass seismische Wellen, die diese Station erreichen relativ stark gestreut werden im Vergleich zu anderen Stationen. Das hohe Maß an Komplexität destabilisiert die Methode und führt zu ungenauen Schätzungen an der Station NKC. Daher bedarf es einer weiteren unabhängigen Validierung der hohen Dämpfung bei gegebenen geometrischen und spektralen Voraussetzungen. Nichtsdestoweniger wurde bereits eine hohe Dämpfung im Quellvolumen der nordböhmischen Schwärme postuliert und erwartet, insbesondere im Zusammenhang mit einer Zone hoher Brüchigkeit die CO2 bei hohen Drücken beinhaltet. Die Methoden die im Rahmen dieser Thesis entwickelt werden haben das Potential unser Verständnis bezüglich der Rolle von Fluiden und Gasen bei Erdbebenschärmen innerhalb kontinentaler Platten zu verbessern. KW - attenuation tomography KW - earthquake swarms KW - deep learning KW - Dämpfungstomographie KW - Erdbebenschwärme KW - tiefes Lernen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-444040 ER - TY - THES A1 - Al-Halbouni, Djamil T1 - Photogrammetry and distinct element geomechanical modelling of sinkholes and large-scale karstic depressions T1 - Photogrammetrie und geomechanische Diskrete-Elemente-Modellierung von Erdfällen und großskaligen Karstsenken N2 - Sinkholes and depressions are typical landforms of karst regions. They pose a considerable natural hazard to infrastructure, agriculture, economy and human life in affected areas worldwide. The physio-chemical processes of sinkholes and depression formation are manifold, ranging from dissolution and material erosion in the subsurface to mechanical subsidence/failure of the overburden. This thesis addresses the mechanisms leading to the development of sinkholes and depressions by using complementary methods: remote sensing, distinct element modelling and near-surface geophysics. In the first part, detailed information about the (hydro)-geological background, ground structures, morphologies and spatio-temporal development of sinkholes and depressions at a very active karst area at the Dead Sea are derived from satellite image analysis, photogrammetry and geologic field surveys. There, clusters of an increasing number of sinkholes have been developing since the 1980s within large-scale depressions and are distributed over different kinds of surface materials: clayey mud, sandy-gravel alluvium and lacustrine evaporites (salt). The morphology of sinkholes differs depending in which material they form: Sinkholes in sandy-gravel alluvium and salt are generally deeper and narrower than sinkholes in the interbedded evaporite and mud deposits. From repeated aerial surveys, collapse precursory features like small-scale subsidence, individual holes and cracks are identified in all materials. The analysis sheds light on the ongoing hazardous subsidence process, which is driven by the base-level fall of the Dead Sea and by the dynamic formation of subsurface water channels. In the second part of this thesis, a novel, 2D distinct element geomechanical modelling approach with the software PFC2D-V5 to simulating individual and multiple cavity growth and sinkhole and large-scale depression development is presented. The approach involves a stepwise material removal technique in void spaces of arbitrarily shaped geometries and is benchmarked by analytical and boundary element method solutions for circular cavities. Simulated compression and tension tests are used to calibrate model parameters with bulk rock properties for the materials of the field site. The simulations show that cavity and sinkhole evolution is controlled by material strength of both overburden and cavity host material, the depth and relative speed of the cavity growth and the developed stress pattern in the subsurface. Major findings are: (1) A progressively deepening differential subrosion with variable growth speed yields a more fragmented stress pattern with stress interaction between the cavities. It favours multiple sinkhole collapses and nesting within large-scale depressions. (2) Low-strength materials do not support large cavities in the material removal zone, and subsidence is mainly characterised by gradual sagging into the material removal zone with synclinal bending. (3) High-strength materials support large cavity formation, leading to sinkhole formation by sudden collapse of the overburden. (4) Large-scale depression formation happens either by coalescence of collapsing holes, block-wise brittle failure, or gradual sagging and lateral widening. The distinct element based approach is compared to results from remote sensing and geophysics at the field site. The numerical simulation outcomes are generally in good agreement with derived morphometrics, documented surface and subsurface structures as well as seismic velocities. Complementary findings on the subrosion process are provided from electric and seismic measurements in the area. Based on the novel combination of methods in this thesis, a generic model of karst landform evolution with focus on sinkhole and depression formation is developed. A deepening subrosion system related to preferential flow paths evolves and creates void spaces and subsurface conduits. This subsequently leads to hazardous subsidence, and the formation of sinkholes within large-scale depressions. Finally, a monitoring system for shallow natural hazard phenomena consisting of geodetic and geophysical observations is proposed for similarly affected areas. N2 - Dolinen und Senken sind typische Landformen von Karstgebieten. Sie stellen in den betroffenen Gebieten weltweit ein erhebliches Naturrisiko für Infrastruktur, Landwirtschaft, Wirtschaft und das menschliche Leben dar. Die physikalisch-chemischen Prozesse der Entstehung solcher Senkungen sind vielfältig und reichen von Auflösung und Materialerosion im Untergrund bis zu mechanischem Absenken/Bruchs des Oberbodens. Diese Arbeit betrachtet die Mechanismen, die zur Entwicklung von Dolinen und Senken führen, anhand von verschiedenen geowissenschaftlichen Methoden:Fernerkundung, Gesteinsmechanischer Modellierung und pberflächennaher Geophysik. Im ersten Teil werden detaillierte Informationen über den geologischen Hintergrund, Bodenstrukturen, Formen und die räumlich-zeitliche Entwicklung von Senkungen an einem sehr aktiven Karstgebiet am Toten Meer zusammengetragen. Dort bilden sich seit den 1980er Jahren immer größere Ansammlungen von Erdfällen, wie diese Phänomene auch oft genannt werden. Die Form der Erdfälle unterscheidet sich je nach Material, in dem sie entstehen: Erdfälle in Sand-Kies Böden und Salz sind im Allgemeinen tiefer und schmaler als Dolinen in den Schlammablagerungen des Toten Meeres. Wiederholte Aufnahmen aus der Luft mit Hilfe von Drohnen oder Ballons helfen dabei, kleine Absenkungen, einzelne Löcher und Risse zu identifizieren. Die Ursache dieser gefährlichen Absenkungen am Toten Meer ist in dem stetigen Fall des Seespiegels und der Bildung von starken Unterwasserkanälen zu sehen, die fortlaufend Material aus dem Boden herausspülen, sog. Subrosion. Im zweiten Teil dieser Dissertation wird ein neuer, geomechanischer Modellierungsansatz zur Simulation des Wachstums von Hohlräumen im Untergrund und der Bildung von Senkungsstrukturen vorgestellt. Die Simulationen zeigen, dass die Entwicklung der Hohlräume und Erdfälle durch die Materialstärke, die Tiefe und Geschwindigkeit des Hohlraumwachstums und durch das sich bildende Spannungsmuster im Untergrund gesteuert wird. Die wichtigsten Ergebnisse der Studie sind: (1) Eine fortlaufend sich vertiefende Subrosion mit variabler Wachstumsgeschwindigkeit führt zu einem stärker fragmentierten Spannungsmuster im Boden. Es begünstigt das Bilden von ineinander verschachtelten Erdfällen (Cluster) in großen Vertiefungen. (2) Materialien mit niedriger Festigkeit (wie z.B. Schlamm) können keine großen Hohlräume bilden, und das Absinken geschieht durch ein allmähliches Absacken. (3) Materialien mit hoher Festigkeit (wie z.B. verfestigte Sande/Kiese oder Steinsalz) unterstützen die Bildung großer Hohlräume, was zu einem plötzlichen Zusammenbruch des Oberbodens führen kann. (4) Großskalige Senkungsstrukturen bilden sich entweder durch das Verschachteln von kleineren Dolinen, blockweise sprödem Versagen, oder das allmähliche Absinken mit seitlicher Erweiterung. Die Ergebnisse der numerischen Simulationen stimmen im Allgemeinen sehr gut sowohl mit den beobachteten Senkungsformen an der Oberfläche überein, als auch mit Untergrundstrukturen beobachtet durch seismische und elektrische Methoden. Basierend auf der neuartigen Methodenkombination dieser Arbeit wird ein generisches Modell der Entwicklung von Senkungsstrukturen in Karstgebieten vorgestellt. Eine sich vertiefende Subrosion entlang von unterirdischen Kanälen erzeugt Hohlräume und führt in der Folge zu diesen gefährlichen Absenkungen und zur Bildung von Erdfällen innerhalb großer Vertiefungen. KW - Photogrammetry KW - Sinkholes KW - Karst KW - Discrete Element Method KW - Geomechanical Modelling KW - Applied Geophysics KW - Natural Hazards KW - Photogrammetrie KW - Erdfälle KW - Karst KW - Diskrete-Elemente-Methode KW - Geomechanische Modellierung KW - Angewandte Geophysik KW - Naturgefahren Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432159 ER - TY - THES A1 - Nikkhoo, Mehdi T1 - Analytical and numerical elastic dislocation models of volcano deformation processes T1 - Analytische und numerische Dislokationsmodelle von Verformungsprozessen an Vulkanen N2 - The advances in modern geodetic techniques such as the global navigation satellite system (GNSS) and synthetic aperture radar (SAR) provide surface deformation measurements with an unprecedented accuracy and temporal and spatial resolutions even at most remote volcanoes on Earth. Modelling of the high-quality geodetic data is crucial for understanding the underlying physics of volcano deformation processes. Among various approaches, mathematical models are the most effective for establishing a quantitative link between the surface displacements and the shape and strength of deformation sources. Advancing the geodetic data analyses and hence, the knowledge on the Earth’s interior processes, demands sophisticated and efficient deformation modelling approaches. Yet the majority of these models rely on simplistic assumptions for deformation source geometries and ignore complexities such as the Earth’s surface topography and interactions between multiple sources. This thesis addresses this problem in the context of analytical and numerical volcano deformation modelling. In the first part, new analytical solutions for triangular dislocations (TDs) in uniform infinite and semi-infinite elastic media have been developed. Through a comprehensive investigation, the locations and causes of artefact singularities and numerical instabilities associated with TDs have been determined and these long-standing drawbacks have been addressed thoroughly. This approach has then been extended to rectangular dislocations (RDs) with full rotational degrees of freedom. Using this solution in a configuration of three orthogonal RDs a compound dislocation model (CDM) has been developed. The CDM can represent generalized volumetric and planar deformation sources efficiently. Thus, the CDM is relevant for rapid inversions in early warning systems and can also be used for detailed deformation analyses. In order to account for complex source geometries and realistic topography in the deformation models, in this thesis the boundary element method (BEM) has been applied to the new solutions for TDs. In this scheme, complex surfaces are simulated as a continuous mesh of TDs that may possess any displacement or stress boundary conditions in the BEM calculations. In the second part of this thesis, the developed modelling techniques have been applied to five different real-world deformation scenarios. As the first and second case studies the deformation sources associated with the 2015 Calbuco eruption and 2013–2016 Copahue inflation period have been constrained by using the CDM. The highly anisotropic source geometries in these two cases highlight the importance of using generalized deformation models such as the CDM, for geodetic data inversions. The other three case studies in this thesis involve high-resolution dislocation models and BEM calculations. As the third case, the 2013 pre-explosive inflation of Volcán de Colima has been simulated by using two ellipsoidal cavities, which locate zones of pressurization in the volcano’s lava dome. The fourth case study, which serves as an example for volcanotectonics interactions, the 3-D kinematics of an active ring-fault at Tendürek volcano has been investigated through modelling displacement time series over the 2003–2010 time period. As the fifth example, the deformation sources associated with North Korea’s underground nuclear test in September 2017 have been constrained. These examples demonstrate the advancement and increasing level of complexity and the general applicability of the developed dislocation modelling techniques. This thesis establishes a unified framework for rapid and high-resolution dislocation modelling, which in addition to volcano deformations can also be applied to tectonic and humanmade deformations. N2 - Fortschritte in modernen geodätischen Techniken wie dem globalen Navigationssatellitensystem (GNSS) und dem Synthetic Apertur Radar (SAR), liefern Messungen der Oberflächenverformung mit einer beispiellosen Genauigkeit sowie zeitlichen und räumlichen Auflösungen, selbst an abgelegensten Vulkanen. Die Modellierung von hochqualitativen geodätischen Daten ist entscheidend für das Verständnis der zugrundeliegenden Physik der Verformungsprozesse an diesen Vulkanen. Um eine quantitative Verbindung zwischen den Oberflächenverschiebungen und der Form und Stärke von Verformungsquellen herzustellen, sind mathematische Modelle am effektivsten. Die Fortschnitte in geodätischen Datenanalysen und damit das Wissen über die Prozesse im Inneren der Erde erfordern ausgefeilte und effiziente Ansätze der Verformungsmodellierung. Die meisten dieser Modelle beruhen jedoch auf vereinfachten Annahmen der Geometrien der Verformungsquellen und ignorieren Komplexitäten wie die Erdoberflächentopographie und Wechselwirkungen zwischen mehreren Quellen. Diese Doktorarbeit befasst sich mit diesem Problem im Kontext der analytischen und numerischen Vulkanverformungsmodellierung. Im ersten Schritt wurden neue analytische Lösungen für dreieckige Dislokationen (triangular dislocation-TD) im gleichförmigen elastischen Voll- und Halbraum entwickelt. Durch eine umfassende Untersuchung wurden die Orte und Ursachen von TDs verbundenen Artefaktsingularitäten und numerischen Instabilitäten identifiziert und diese Problematik gelöst. Dieser Ansatz wurde dann auf rechteckige Dislokationen (rectangular dislocation-RD) mit vollen Rotationsfreiheitsgraden erweitert. Unter Verwendung dieser Lösung in einer Konfiguration von drei orthogonalen RDs wurde ein “Zusammengesetztes Dislokationsmodel” (compound dislocation model-CDM) entwickelt. Das CDM kann verallgemeinerte volumetrische und planare Verformungsquellen effizient darstellen. Somit ist das CDM für schnelle Inversionen in Frühwarnungssystemen relevant und kann auch für detaillierte Verformungsanalysen verwendet werden. Um komplexe Quellengeometrien und eine realistische Topographie in den Verformungsmodellen dieser Untersuchung zu berücksichtigen, wurde die Randelementmethode (REM) auf die neuen Lösungen für TDs angewendet. In diesem Schema werden komplexe Oberflächen als ein kontinuierliches Netz von DVs simuliert, die in den REM-Berechnungen beliebige Verschiebungs- oder Spannungsgrenzbedingungen aufweisen können. Als Beispiele wurden die entwickelten Modellierungstechniken auf fünf verschiedene reale Verformungsszenarien angewendet. Das erste und zweite Beispiel, die Calbuco-Eruption 2015 und die 2013–2016 Copahue-Aufwölbungsperiode, wurden durch die Verwendung des CDM näher beschrieben. Die hoch anisotropen Quellengeometrien in diesen beiden Fällen unterstreichen die Bedeutung der Verwendung verallgemeinerter Verformungsmodelle wie dem CDM für geodätische Dateninversionen. Weitere Fallstudien dieser Doktorarbeit umfassen hochauflösende Versetzungsmodelle und REM-Berechnungen. Die Aufwölbung 2013 am Volcán de Colima wurde simuliert, indem zwei ellipsoidale Quellen verwendet wurden, die Druckzonen im Lavadom des Vulkans lokalisieren. Danach, als Beispiel für Vulkantektonik-Interaktionen, wurde die 3-D-Kinematik einer aktiven Ringstörung am Tendürek-Vulkan durch Modellierung von InSAR-Zeitreihen über die Zeitperiode 2003–2010 simuliert. Als letztes Beispiel wurden die Verformungsquellen, die im Zusammenhang mit Nordkoreas unterirdischem Atomtest im September 2017 stehen, simuliert und der Einsatz der verwendeten Methoden auch in nicht vulkanischen Terrain gezeigt. Diese Beispiele zeigen den Fortschritt und das zunehmende Niveau der Komplexität und die allgemeine Anwendbarkeit der entwickelten Dislokationsmodellierungstechniken. Diese Doktorarbeit unterstreicht die Anwendung von neuer schneller und hochauflösender Dislokationsmodellierung, die neben Vulkanverformungen auch auf tektonische und vom Menschen verursachte Verformungen angewendet werden kann. KW - Volcano deformation modelling KW - Triangular dislocations (TDs) KW - Compound dislocation models (CDMs) KW - Inverse modelling KW - crustal deformations KW - Vulkanverformungsmodellierung KW - dreieckige Dislokationen (TDs) KW - Zusammengesetztes Dislokationsmodel (CDM) KW - inverse Modellirung KW - Krustenverformungen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429720 ER - TY - THES A1 - Laudan, Jonas T1 - Changing susceptibility of flood-prone residents in Germany T1 - Die Änderung der Anfälligkeit von Hochwassergefährdeten Anwohnern in Deutschland BT - mental coping and mitigation behaviour in the context of different flood types BT - Mentale Bewältigung und Schadensminderungsverhalten im Zusammenhang mit Verschiedenen Hochwassertypen N2 - Floods are among the most costly natural hazards that affect Europe and Germany, demanding a continuous adaptation of flood risk management. While social and economic development in recent years altered the flood risk patterns mainly with regard to an increase in flood exposure, different flood events are further expected to increase in frequency and severity in certain European regions due to climate change. As a result of recent major flood events in Germany, the German flood risk management shifted to more integrated approaches that include private precaution and preparation to reduce the damage on exposed assets. Yet, detailed insights into the preparedness decisions of flood-prone households remain scarce, especially in connection to mental impacts and individual coping strategies after being affected by different flood types. This thesis aims to gain insights into flash floods as a costly hazard in certain German regions and compares the damage driving factors to the damage driving factors of river floods. Furthermore, psychological impacts as well as the effects on coping and mitigation behaviour of flood-affected households are assessed. In this context, psychological models such as the Protection Motivation Theory (PMT) and methods such as regressions and Bayesian statistics are used to evaluate influencing factors on the mental coping after an event and to identify psychological variables that are connected to intended private flood mitigation. The database consists of surveys that were conducted among affected households after major river floods in 2013 and flash floods in 2016. The main conclusions that can be drawn from this thesis reveal that the damage patterns and damage driving factors of strong flash floods differ significantly from those of river floods due to a rapid flow origination process, higher flow velocities and flow forces. However, the effects on mental coping of people that have been affected by flood events appear to be weakly influenced by different flood types, but yet show a coherence to the event severity, where often thinking of the respective event is pronounced and also connected to a higher mitigation motivation. The mental coping and preparation after floods is further influenced by a good information provision and a social environment, which encourages a positive attitude towards private mitigation. As an overall recommendation, approaches for an integrated flood risk management in Germany should be followed that also take flash floods into account and consider psychological characteristics of affected households to support and promote private flood mitigation. Targeted information campaigns that concern coping options and discuss current flood risks are important to better prepare for future flood hazards in Germany. N2 - Hochwasser zählen zu den schadensträchtigsten Naturgefahren, die in Europa und Deutschland vorkommen. In Deutschland traten in den letzten Jahren einige sehr starke Hochwasser und Überflutungen auf, die die Einstufung von Hochwassern als gefährliche Naturgewalt bestätigten. Private Haushalte leiden unter finanziellen und persönlichen Verlusten und sind sogar teilweise mehrfach betroffen. Folgenreiche Hochwasser, die im Gedächtnis blieben, waren insbesondere das Elbe-Hochwasser im Sommer 2002 sowie Überschwemmungen mit Schwerpukten an Elbe und Donau im Juni 2013. Im Mai und Juni 2016 kam es zu heftigen Unwettern über Zentraleuropa, während insbesondere Süddeutschland von Starkregen und Sturzfluten betroffen war. Hierbei wurden vereinzelte Ortschaften in Baden-Württtemberg (vor allem Braunsbach) und Bayern (vor allem Simbach am Inn) von extremen Sturzfluten beeinträchtigt und Bauwerke stark beschädigt. Als Reaktion auf die Flusshochwasser 2002 und 2013 wurde unter anderem das aktuelle Hochwasserrisikomanagement in Deutschland so angepasst, dass neben übergeordneten und technischen Hochwasserschutzmaßnahmen auch auf lokaler Ebene Maßnahmen ergriffen werden müssen. Diese umfassen Hochwasservorsorgemaßnahmen, die betroffene Haushalte selbst implementieren sollen. Neben strukturellen Maßnahmen wie z.B. der Verlegung von Heizung, Elektronik und Öltank in nicht-gefährdete Stockwerke sowie dem Schutz des Gebäudes vor Eindringen von Wasser, können auch nichtstrukturelle Maßnahmen, wie z.B. eine angepasste Wohnraumnutzung und das Verwenden von geeigneter Inneneinrichtung, ergriffen werden, um Hochwasserschäden signifikant zu verringern. Bis heute ist es jedoch unklar, aus welchen Gründen sich die betroffenen Menschen für Hochwasservorsorgemaßnahmen entscheiden und wie die individuelle Motivation, Maßnahmen zu implementieren, verstärkt werden kann. Neben dem Wissen um die eigene Hochwassergefährdung ist anzunehmen, dass die Selbsteinschätzung in Bezug auf einen wirksamen Umgang mit Hochwassern ausschlaggebend für die Motivation zur Vorsorge ist. Außerdem kann davon ausgegangen werden, dass verschiedene Hochwassertypen wie Flusshochwasser und Sturzfluten mit ihren unterschiedlichen Dynamiken unterschiedliche Auswirkungen auf die mentale Bewältigung und somit auch auf das Vorsorgeverhalten hervorrufen. Die vorliegende Arbeit hat demnach zum Ziel, Flusshochwasser und Sturzfluten in Deutschland miteinander zu vergleichen, wobei der Fokus auf schadenstreibenden Faktoren und psychologischen Auswirkungen auf betroffene Haushalte liegt. Weiterhin sollen damit verbundenes Vorsorgeverhalten untersucht und gegebenenfalls Handlungsempfehlungen für das Hochwasserrisikomanagement abgeleitet werden, das einerseits psychologische Charakteristika und andererseits Sturzfluten als signifikante Naturgefahr in Deutschland miteinbezieht. Hierbei werden sozio-ökonomische, zwischenmenschliche und psychologische Variablen von Haushalten ausgewertet, die 2013 und 2016 von Flusshochwassern und Sturzfluten betroffen waren. Dabei kommen verschiedene Methoden (Regressionen, Bayessche Statistik) und Modelle (Protection Motivation Theory) zum Einsatz, um Verbindungen zwischen den Variablen aufzeigen. Die Ergebnisse veranschaulichen erstens, dass Flusshochwasser und Sturzfluten zwar unterschiedliche Schäden an Gebäuden aufgrund verschiedener Flutdynamiken hervorrufen können, was sich bei Betroffenen jedoch nicht in unterschiedlichen psychologischen Auswirkungen widerspiegelt. Vielmehr ist die jeweilige Stärke und Schwere des Hochwassers entscheidend für charakteristische Ausprägungen von psychologischen Variablen. In diesem Falle sorgt eine stärkere Flut dafür, dass häufiger an das jeweilige Ereignis gedacht wird, während die Motivation zur Eigenvorsorge in solchen Fällen erhöht scheint. Zweitens sind ein soziales Umfeld, in dem bereits Vorsorgemaßnahmen implementiert wurden, sowie hilfreiche Informationen für geeignete Maßnahmen, deren Kosten und Aufklärung über das aktuelle Hochwasserrisiko förderlich für die Motivation, private Vorsorge zu betreiben. Ein aktuelles Hochwasserrisikomanagement sollte demnach auch Sturzfluten als mögliches Risiko in Deutschland miteinbeziehen und mehr in die Aufklärung und private Unterstützung bei Hochwassern investieren. Ein besseres Verstehen von psychologischen und mentalen Auswirkungen von verschiedenen Hochwassertypen hat den Vorteil, dass Hilfe und Informationskampagnen individuell und effizient gestaltet, Schäden minimiert und Schadensprognosen aufgrund der genaueren Kenntnisse über Vorsorgeverhalten verbessert werden können. KW - floods KW - psychology KW - flash floods KW - Hochwasser KW - Psychologie KW - Sturzfluten Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-434421 ER - TY - THES A1 - Codeco, Marta Sofia Ferreira T1 - Constraining the hydrology at Minas da Panasqueira W-Sn-Cu deposit, Portugal T1 - Bestimmung der Hydrologie der W-Sn-Cu Lagerstätte in der Miene Panasqueira, Portugal T1 - Considerações sobre a hidrologia do depósito de W-Sn-Cu da Panasqueira, Portugal N2 - This dissertation combines field and geochemical observations and analyses with numerical modeling to understand the formation of vein-hosted Sn-W ore in the Panasqueira deposit of Portugal, which is among the ten largest worldwide. The deposit is located above a granite body that is altered by magmatic-hydrothermal fluids in its upper part (greisen). These fluids are thought to be the source of metals, but that was still under debate. The goal of this study is to determine the composition and temperature of hydrothermal fluids at Panasqueira, and with that information to construct a numerical model of the hydrothermal system. The focus is on analysis of the minerals tourmaline and white mica, which formed during mineralization and are widespread throughout the deposit. Tourmaline occurs mainly in alteration zones around mineralized veins and is less abundant in the vein margins. White mica is more widespread. It is abundant in vein margins as well as alteration zones, and also occurs in the granite greisen. The laboratory work involved in-situ microanalysis of major- and trace elements in tourmaline and white mica, and boron-isotope analysis in both minerals by secondary ion mass spectrometry (SIMS). The boron-isotope composition of tourmaline and white mica suggests a magmatic source. Comparison of hydrothermally-altered and unaltered rocks from drill cores shows that the ore metals (W, Sn, Cu, and Zn) and As, F, Li, Rb, and Cs were introduced during the alteration. Most of these elements are also enriched in tourmaline and mica, which confirms their potential value as exploration guides to Sn-W ores elsewhere. The thermal evolution of the hydrothermal system was estimated by B-isotope exchange thermometry and the Ti-in-quartz method. Both methods yielded similar temperatures for the early hydrothermal phase: 430° to 460°C for B-isotopes and 503° ± 24°C for Ti-in-quartz. Mineral pairs from a late fault zone yield significantly lower median temperatures of 250°C. The combined results of thermometry with variations in chemical and B-isotope composition of tourmaline and mica suggest that a similar magmatic-hydrothermal fluid was active at all stages of mineralization. Mineralization in the late stage shows the same B-isotope composition as in the main stage despite a ca. 250°C cooling, which supports a multiple injection model of magmatic-hydrothermal fluids. Two-dimensional numerical simulations of convection in a multiphase NaCl hydrothermal system were conducted: (a) in order to test a new approach (lower dimensional elements) for flow through fractures and faults and (b) in order to identify conditions for horizontal fluid flow as observed in the flat-lying veins at Panasqueira. The results show that fluid flow over an intrusion (heat and fluid source) develops a horizontal component if there is sufficient fracture connectivity. Late, steep fault zones have been identified in the deposit area, which locally contain low-temperature Zn-Pb mineralization. The model results confirm that the presence of subvertical faults with enhanced permeability play a crucial role in the ascent of magmatic fluids to the surface and the recharge of meteoric waters. Finally, our model results suggest that recharge of meteoric fluids and mixing processes may be important at later stages, while flow of magmatic fluids dominate the early stages of the hydrothermal fluid circulation. N2 - In dieser Dissertation werden Feldbeobachtungen und geochemische Analysen mit numerischer Modellierung kombiniert, um die Bildung von Sn-W-Cu- Mineralisation in der Erzlagerstätte Panasqueira in Portugal zu verstehen. Panasqueira gehört zu den 10 größten Sn-W Lagerstätten weltweit, sie befindet sich oberhalb eines Granitkörpers, der im oberen Bereich durch magmatisch-hydrothermale Fluide alteriert ist (Greisenbildung). Es wird postuliert, dass magmatisch Fluide die Quelle für Metalle sind, das wurde aber bislang nicht eindeutig bestätigt. Das Ziel dieser Arbeiten ist es, die Zusammensetzung und Temperatur der hydrothermalen Fluide in Panasqueira zu bestimmen und mit diesen Informationen ein numerisches Modell des hydrothermalen Systems zu erstellen. Der Schwerpunkt liegt auf der Untersuchung von Turmalin und Hellglimmer, welche bei der Mineralisation gebildet wurden und in der gesamten Lagerstätte weit verbreitet sind. Turmalin kommt hauptsächlich in Alterationszonen um die vererzten Quarzgänge vor, sowie weniger häufig im Randbereich der Gänge. Hellglimmer dagegen ist stärker verbreitet. Es kommt sowohl in Quarzgangrändern und Alterationszonen vor als auch im Greisenkörper. Die Laborarbeiten umfassten in-situ Mikroanalytik der Haupt- und Spurenelementgehalte von Turmalin und Hellglimmer sowie die Analyse der Bor-isotopen in beiden Mineralen mittels Sekundärionen-Massenspektrometrie (SIMS). Die Bor-Isotopenzusammensetzung von Turmalin und Hellglimmer deuten auf eine magmatische Quelle hin. Der Vergleich von hydrothermal-überprägten mit unveränderten Gesteinsproben aus Bohrkernen zeigt, dass die Erzmetalle (W, Sn, Cu, Zn) sowie As, F, Li, Rb und Cs während der Alteration hinzugefügt wurden. Die meisten dieser Elemente sind auch in Turmalin und Glimmer angereichert, womit ihre Nützlichkeit als Explorationshilfe für Sn-W-Erze in anderen Gebieten bestätigt wird. Die thermische Entwicklung des Hydrothermalsystems wurde durch B-Isotopenaustausch-Thermometrie sowie durch die Ti-in-Quarz- Methode bestimmt. Beide Methoden ergaben für die frühe Hydrothermalphase ähnliche Temperaturen: 430° - 460°C für B-Isotope und 503° ± 24°C für Ti-in-Quarz. Mineral Paare aus einer späten Verwerfungszone ergaben deutlich niedrigere B-Isotopentemperaturen von durchschnittlich 250°C. Die Kombination der Thermometrie mit den chemischen und B-Isotopenvariationen in Turmalin und Glimmer deutet darauf hin, dass ein ähnliches magmatisch-hydrothermales Fluid in allen Mineralisierungsstufen beteiligt war. Die Mineralisierung im späten Stadium zeigt dieselbe B-Isotopenzusammensetzung wie die Hauptphase trotz der Abkühlung um ca. 250°C, was ein Mehrfachinjektionsmodell des magmatisch-hydrothermalen Fluids unterstützt. Zwei-dimensionale numerische Simulationen der Konvektion in einem mehrphasen NaCl System wurden durchgeführt um: a) eine neue Methode (lower dimensional elements) für hydrothermales Fließen durch Brüche und Störungszonen zu testen und b) die Voraussetzungen für die in Panasqueira dominierende horizontale Fluidbewegung in den flach liegenden Gängen zu identifizieren. Die Ergebnisse zeigen, dass Fluidströmungen immer dann eine starke horizontale Komponente haben wenn ausreichende Bruchverbindungen im Gestein vorhanden sind. Späte, steile Bruchzonen sind in der Umgebung der Lagerstätte identifiziert worden, welche lokal niedrig-temperierte Zn-Pb Mineralisierungen führen. Die Modellergebnisse bestätigen, dass das Vorhandensein subvertikaler Störungszonen mit höherer Permeabilität eine entscheidende Rolle für den Aufstieg magmatischer Fluide zur Oberfläche und das Eindringen von meteorischen Fluiden spielen. Schließlich schlagen unsere Simulationsergebnisse vor, dass das Eindringen meteorischer Fluide und Mischungsprozesse in späteren Phasen der hydrothermalen Zirkulation wichtig sind, während magmatische Fluide in frühen Phasen dominieren. N2 - O estudo apresentado na presente dissertação combina análises e observações campo e geoquímica (e.g. multi-elementar, mineral, isotópica) com modelação numérica por forma a compreender a evolução do sistema hidrotermal da Panasqueira e a formação dos filões sub-horizontais. O jazigo filoniano da Panasqueira, localizado em Portugal, encontra-se entre os dez maiores depósitos do tipo a nível mundial e é o maior produtor de W na União Europeia. O depósito desenvolveu-se a topo de um granito Varisco do tipo S, cuja cúpula se encontra greisenizada devido a circulação de fluidos de carácter magmato-hidrotermal. Pensa-se que estes fluidos sejam a fonte dos metais para a génese do jazigo, contudo esta questão tem constituído matéria de grande debate. Por forma, a compreender a evolução hidrotermal e construir um modelo numérico capaz de simular a hidrologia do sistema hidrotermal da Panasqueira, este trabalho envolveu a determinação da composição e temperatura dos fluidos hidrotermais. Para o efeito, este estudo concentrou-se na caracterização geoquímica e isotópica de turmalina e mica branca, as quais se formaram durante os processos iniciais de alteração hidrotermal e/ou mineralização, ocorrendo em diversos contextos. A turmalina ocorre essencialmente nos halos de alteração hidrotermal que encerram os veios mineralizados e está predominantemente associada aos estádios pré-mineralização. Em contraste, a mica branca ocorre em diversos contextos: greisen, filões (salbandas), e halos de alteração hidrotermal, estando associada quer aos estádios precoces, quer aos estádios principais de mineralização. O trabalho laboratorial envolveu análises in-situ de elementos maiores e traço em turmalina e mica, e análises isotópicas (isótopos de boro) em ambas as fases minerais através de espectrometria de massa por iões secundários (SIMS). As composições isotópicas da turmalina e mica branca sugerem uma fonte magmática para os fluidos hidrotermais. A comparação dos dados de litogeoquímica dos metassedimentos alterados e não alterados mostra que os metais (W, Sn, Cu e Zn), assim como em As, F, Li, Rb e Cs foram introduzidos durante o processo de alteração hidrotermal. Parte substancial destes elementos encontram-se também enriquecidos na mica e turmalina, o que confirma o seu potencial valor como vectores de prospecção mineral para os depósitos de W-Sn. A evolução térmica do sistema hidrotermal da Panasqueira foi estimada utilizando geotermómetros minerais. O geotermómetro do quartzo (Ti-in-quartz) indica temperaturas de 503° ± 24°C para a alteração precoce das rochas encaixantes, o que é consistente com as temperaturas médias de 430° a 460°C} obtidas através da geotermometria isotópica de boro em turmalina e mica branca nas salbandas micáceas. As zonas de falha estudadas através da utilização de pares-minerais indicam temperaturas médias substancialmente mais baixas (250°C). A combinação dos estudos de geotermometria mineral com as variações químicas e isotópicas obtidas para a turmalina e mica sugerem que um fluido magmático-hidrotermal relativamente homogéneo esteve activo durante todos os estádios de mineralização. Durante estádios tardios, a os fluidos mineralizantes possuem as mesmas composições isotópicas obtidas para os estádios principais, embora que registando um arrefecimento de ca. 250°C, o que suporta um modelo dinâmico com múltiplas injecções de fluidos magmático-hidrotermais. Simulações numéricas bidimensionais da convecção num sistema hidrotermal multifásico salino foram conduzidas: (i) para testar uma nova metodologia (“lower dimensional elements”) capaz de traduzir o fluxo de fluidos através de fracturas e falhas e, (ii) para identificar as condições do fluxo horizontal observado nos filões sub-horizontais da Panasqueira. Os resultados mostram que o escoamento dos fluidos em associação com uma intrusão (fonte de calor e fluidos) desenvolve uma componente horizontal, desde que haja conectividade suficiente. Falhas tardias inclinadas identificadas na área contem localmente mineralização de Zn e Pb de baixa temperatura. Os resultados dos modelos numéricos confirmam que a presença de falhas sub-verticais de permeabilidade acrescida tem um papel crucial na ascensão de fluidos magmáticos até a superfície e na infiltração de águas meteóricas. Por fim, os resultados das simulações sugerem que a infiltração de águas meteóricas e processos de mistura de fluidos possam ser importantes durantes os estádios tardios, enquanto os fluidos de carácter magmático dominam os estádios iniciais da circulação hidrotermal dos fluidos. KW - Panasqueira KW - tourmaline KW - muscovite KW - Boron isotopes KW - tungsten-tin deposits KW - magmatic-hydrothermal systems KW - LA-ICP-MS KW - SIMS KW - numerical simulation KW - fluid flow KW - fracture-controlled KW - alteration geochemistry KW - Panasqueira KW - Turmalin KW - Muscovit KW - Bor-isotopen KW - Wofram-Zinn Lagerstätte KW - magmatisch-hydrothermale Systeme KW - LA-ICP-MS KW - SIMS KW - numerische Modellierung KW - Fluid-strömungen KW - strukturelle Kontrolle KW - Alterationsgeochemie KW - Panasqueira KW - turmalina KW - muscovite KW - Isótopos de Boro KW - depósitos de volfrâmio-estanho KW - sistemas magmático-hidrotermais KW - LA-ICP-MS KW - SIMS KW - simulações numéricas KW - fluxo de fluidos KW - controlo estrutural KW - geoquímica da alteração hidrotermal Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429752 ER - TY - THES A1 - von Specht, Sebastian T1 - Likelihood - based optimization in strong-motion seismology Y1 - 2019 ER - TY - THES A1 - Korges, Maximilian T1 - Constraining the hydrology of intrusion-related ore deposits with fluid inclusions and numerical modeling T1 - Bestimmung der Hydrologie von Erzlagerstätten an Intrusionen mit Flüssigkeitseinschlüssen und numerischer Modellierung N2 - Magmatic-hydrothermal fluids are responsible for numerous mineralization types, including porphyry copper and granite related tin-tungsten (Sn-W) deposits. Ore formation is dependent on various factors, including, the pressure and temperature regime of the intrusions, the chemical composition of the magma and hydrothermal fluids, and fluid rock interaction during the ascent. Fluid inclusions have potential to provide direct information on the temperature, salinity, pressure and chemical composition of fluids responsible for ore formation. Numerical modeling allows the parametrization of pluton features that cannot be analyzed directly via geological observations. Microthermometry of fluid inclusions from the Zinnwald Sn-W deposit, Erzgebirge, Germany / Czech Republic, provide evidence that the greisen mineralization is associated with a low salinity (2-10 wt.% NaCl eq.) fluid with homogenization temperatures between 350°C and 400°C. Quartzes from numerous veins are host to inclusions with the same temperatures and salinities, whereas cassiterite- and wolframite-hosted assemblages with slightly lower temperatures (around 350°C) and higher salinities (ca. 15 wt. NaCl eq.). Further, rare quartz samples contained boiling assemblages consisting of coexisting brine and vapor phases. The formation of ore minerals within the greisen is driven by invasive fluid-rock interaction, resulting in the loss of complexing agents (Cl-) leading to precipitation of cassiterite. The fluid inclusion record in the veins suggests boiling as the main reason for cassiterite and wolframite mineralization. Ore and coexisting gangue minerals hosted different types of fluid inclusions where the beginning boiling processes are solely preserved by the ore minerals emphasizing the importance of microthermometry in ore minerals. Further, the study indicates that boiling as a precipitation mechanism can only occur in mineralization related to shallow intrusions whereas deeper plutons prevent the fluid from boiling and can therefore form tungsten mineralization in the distal regions. The tin mineralization in the Hämmerlein deposit, Erzgebirge, Germany, occurs within a skarn horizon and the underlying schist. Cassiterite within the skarn contains highly saline (30-50 wt% NaCl eq.) fluid inclusions, with homogenization temperatures up to 500°C, whereas cassiterites from the schist and additional greisen samples contain inclusions of lower salinity (~5 wt% NaCl eq.) and temperature (between 350 and 400°C). Inclusions in the gangue minerals (quartz, fluorite) preserve homogenization temperatures below 350°C and sphalerite showed the lowest homogenization temperatures (ca. 200°C) whereby all minerals (cassiterite from schist and greisen, gangue minerals and sphalerite) show similar salinity ranges (2-5 wt% NaCl eq.). Similar trace element contents and linear trends in the chemistry of the inclusions suggest a common source fluid. The inclusion record in the Hämmerlein deposit documents an early exsolution of hot brines from the underlying granite which is responsible for the mineralization hosted by the skarn. Cassiterites in schist and greisen are mainly forming due to fluid-rock interaction at lower temperatures. The low temperature inclusions documented in the sphalerite mineralization as well as their generally low trace element composition in comparison to the other minerals suggests that their formation was induced by mixing with meteoric fluids. Numerical simulations of magma chambers and overlying copper distribution document the importance of incremental growth by sills. We analyzed the cooling behavior at variable injection intervals as well as sill thicknesses. The models suggest that magma accumulation requires volumetric injection rates of at least 4 x 10-4 km³/y. These injection rates are further needed to form a stable magmatic-hydrothermal fluid plume above the magma chamber to ensure a constant copper precipitation and enrichment within a confined location in order to form high-grade ore shells within a narrow geological timeframe between 50 and 100 kyrs as suggested for porphyry copper deposits. The highest copper enrichment can be found in regions with steep temperature gradients, typical of regions where the magmatic-hydrothermal fluid meets the cooler ambient fluids. N2 - Magmatisch-hydrothermale Fluide sind verantwortlich für zahlreiche Mineralisationstypen, wie porphyrische Kupferlagerstätten und granitgebundene Zinn-Wolfram (Sn-W) Lagerstätten. Die Lagerstättenbildung ist abhängig von unterschiedlichen Faktoren, z.B. dem Druck- und Temperaturregime der Intrusion, der chemischen Zusammensetzung des Magmas und der hydrothermalen Fluide sowie den Fluid-Gesteinsreaktionen während des Aufstiegs der Fluide. Flüssigkeitseinschlüsse haben das Potential, direkte Informationen zur Temperatur, zum Salzgehalt, zum Druck und der Chemie der Fluide, welche für die Lagerstättenbildung verantwortlich sind, zu liefern. Außerdem erlauben numerische Modellierungen die Parametrisierung der Plutoneigenschaften, die nicht direkt anhand von geologischen Beobachtungen analysiert werden können. Mikrothermometrie von Flüssigkeitseinschlüssen der Zinnwald Sn-W Lagerstätte zeigen, dass die Vergreisung an ein schwach salzhaltiges (2-10 wt.% NaCl eq.) Fluid gebunden ist, das zwischen 350°C und 400°C homogenisiert. Quarze der diversen Gänge beinhalten Einschlüsse mit den gleichen Temperaturen und Salzgehalten, wohingegen Kassiterit und Wolframit Einschlüsse mit niedrigeren Temperaturen (um 350°C) und höheren Salzgehalten zeigen (ca. 15 wt. NaCl eq.). Seltene Quarzproben enthalten kochende Einschluss-Ansammlungen, die aus koexistierenden salzreichen Lösungen und gasreichen Phasen bestehen. Die Bildung der Erzminerale des Greisens entsteht durch tiefgreifende Fluid-Gesteinsreaktionen, die den Verlust des Komplexbildners (Cl-) zur Folge haben, wodurch Kassiterit ausgefällt wird. Die Einschlüsse in den Gängen verdeutlichen, dass kochende Fluide der Hauptgrund für die Kassiterit– und Wolframit–Mineralisation sind. Erz- und benachbarte Gangminerale beinhalten unterschiedliche Einschlusstypen, wobei die beginnende Phasenseparation ausschließlich in den Erzmineralen erhalten ist, wodurch die Bedeutung der Mikrothermometrie in Erzmineralen hervorgehoben wird. Die Studie verdeutlicht weiterhin, dass Phasenseparation als Ausfällungsmechanismus nur in Lagerstätten gefunden werden können, die an flache Intrusionen gebunden sind, wohingegen tiefsitzende Granite die Phasenseparation verhindern. Dies hat zur Folge, dass eine Wolfram–Vererzung eher distal zur Intrusion auftritt. Die Zinn-Mineralisation der Hämmerlein Lagerstätte tritt sowohl in einem Skarn–Horizont als auch im darunterliegenden Schiefer auf. Fluideinschlüsse in Kassiteriten des Skarns enthalten Fluide mit hohem Salzgehhalt (30-50 wt% NaCl eq.) und Homogenisierungstemperaturen von bis zu 500°C, wohingegen Kassiterite des Schiefers (und von zusätzlichen Greisenproben) Einschlüsse mit geringerem Salzgehalt (~5 wt% NaCl eq.) und geringeren Temperaturen (zwischen 350 und 400°C) enthalten. Einschlüsse in Gangmineralen (Quarz, Fluorit) zeigen Homogenisierungstemperaturen von unter 350°C und Einschlüsse in Sphaleriten konservieren die niedrigsten gemessenen Temperaturen (ca. 200°C). Allerdings haben Flüssigkeitseinschlüsse in allen Mineralen (Kassiterite der Schiefer und Greisen, Gangminerale und Sphalerit) einen annähernd gleichen Salzgehalt (2-5 wt% NaCl eq.). Ähnliche Spurenelementgehalte und lineare Trends in der Chemie der Einschlüsse deuten auf ein gemeinsames Ursprungsfluid hin. Die Einschlüsse in der Hämmerlein-Lagerstätte dokumentieren eine frühe Entmischung von heißen Fluiden mit hohem Salzgehalt aus dem darunterliegenden Granit, die für die Mineralisation im Skarn verantwortlich ist. Die Kassiterite der Schiefer und der Greisen formen sich hauptsächlich durch Fluid-Gesteinsreaktionen bei niedrigeren Temperaturen. Die Niedrigtemperatureinschlüsse in Sphalerit und die im Vergleich zu den anderen Mineralen niedrigen Spurenelementgehalte deuten auf eine Bildung aufgrund von Mischungsprozessen mit meteorischen Fluiden hin. Numerische Simulationen von Magmenkammern und deren darüber gelegenen Kupferverteilungen dokumentieren die Wichtigkeit des schrittweisen Wachstums einer Intrusion durch Sills. Wir untersuchten das Abkühlungsverhalten bei unterschiedlichen Injektionsintervallen sowie bei unterschiedlicher Mächtigkeit des Sills. Die Modelle deuten darauf hin, dass für die Bildung der Magmakammer eine Injektionsrate von mindestens ca. 4 x 10-4 km³/y benötigt wird. Solche Raten sind ebenfalls nötig um eine kontinuierliche Bildung von magmatisch-hydrothermalen Fluiden zu garantieren, denn nur dann können sich hoch vererzte Bereiche in einem kurzen geologischen Zeitraum von 50.000 bis 100.000 Jahren bilden, so wie es für porphyrische Kupferlagerstätten angenommen wird. Die höchsten Kupfergehalte bilden sich in Regionen mit steilem Temperaturgradient, also vor allem in Bereichen, wo das magmatisch-hydrothermale Fluid auf kältere meteorische Fluide trifft. KW - fluid inclusions KW - numerical modeling KW - Flüssigkeitseinschlüsse KW - numerische Modellierung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-434843 ER - TY - THES A1 - Ghani, Humaad T1 - Structural evolution of the Kohat and Potwar fold and thrust belts of Pakistan T1 - Strukturelle Entwicklung des Kohat und Potwar Falten- und Überschiebungsgürtel in Pakistan N2 - Fold and thrust belts are characteristic features of collisional orogen that grow laterally through time by deforming the upper crust in response to stresses caused by convergence. The deformation propagation in the upper crust is accommodated by shortening along major folds and thrusts. The formation of these structures is influenced by the mechanical strength of décollements, basement architecture, presence of preexisting structures and taper of the wedge. These factors control not only the sequence of deformation but also cause differences in the structural style. The Himalayan fold and thrust belt exhibits significant differences in the structural style from east to west. The external zone of the Himalayan fold and thrust belt, also called the Subhimalaya, has been extensively studied to understand the temporal development and differences in the structural style in Bhutan, Nepal and India; however, the Subhimalaya in Pakistan remains poorly studied. The Kohat and Potwar fold and thrust belts (herein called Kohat and Potwar) represent the Subhimalaya in Pakistan. The Main Boundary Thrust (MBT) marks the northern boundary of both Kohat and Potwar, showing that these belts are genetically linked to foreland-vergent deformation within the Himalayan orogen, despite the pronounced contrast in structural style. This contrast becomes more pronounced toward south, where the active strike-slip Kalabagh Fault Zone links with the Kohat and Potwar range fronts, known as the Surghar Range and the Salt Range, respectively. The Surghar and Salt Ranges developed above the Surghar Thrust (SGT) and Main Frontal Thrust (MFT). In order to understand the structural style and spatiotemporal development of the major structures in Kohat and Potwar, I have used structural modeling and low temperature thermochronolgy methods in this study. The structural modeling is based on construction of balanced cross-sections by integrating surface geology, seismic reflection profiles and well data. In order to constrain the timing and magnitude of exhumation, I used apatite (U-Th-Sm)/He (AHe) and apatite fission track (AFT) dating. The results obtained from both methods are combined to document the Paleozoic to Recent history of Kohat and Potwar. The results of this research suggest two major events in the deformation history. The first major deformation event is related to Late Paleozoic rifting associated with the development of the Neo-Tethys Ocean. The second major deformation event is related to the Late Miocene to Pliocene development of the Himalayan fold and thrust belt in the Kohat and Potwar. The Late Paleozoic rifting is deciphered by inverse thermal modelling of detrital AFT and AHe ages from the Salt Range. The process of rifting in this area created normal faulting that resulted in the exhumation/erosion of Early to Middle Paleozoic strata, forming a major unconformity between Cambrian and Permian strata that is exposed today in the Salt Range. The normal faults formed in Late Paleozoic time played an important role in localizing the Miocene-Pliocene deformation in this area. The combination of structural reconstructions and thermochronologic data suggest that deformation initiated at 15±2 Ma on the SGT ramp in the southern part of Kohat. The early movement on the SGT accreted the foreland into the Kohat deforming wedge, forming the range front. The development of the MBT at 12±2 Ma formed the northern boundary of Kohat and Potwar. Deformation propagated south of the MBT in the Kohat on double décollements and in the Potwar on a single basal décollement. The double décollement in the Kohat adopted an active roof-thrust deformation style that resulted in the disharmonic structural style in the upper and lower parts of the stratigraphic section. Incremental shortening resulted in the development of duplexes in the subsurface between two décollements and imbrication above the roof thrust. Tectonic thickening caused by duplexes resulted in cooling and exhumation above the roof thrust by removal of a thick sequence of molasse strata. The structural modelling shows that the ramps on which duplexes formed in Kohat continue as tip lines of fault propagation folds in the Potwar. The absence of a double décollement in the Potwar resulted in the preservation of a thick sequence of molasse strata there. The temporal data suggest that deformation propagated in-sequence from ~ 8 to 3 Ma in the northern part of Kohat and Potwar; however, internal deformation in the Kohat was more intense, probably required for maintaining a critical taper after a significant load was removed above the upper décollement. In the southern part of Potwar, a steeper basement slope (β≥3°) and the presence of salt at the base of the stratigraphic section allowed for the complete preservation of the stratigraphic wedge, showcased by very little internal deformation. Activation of the MFT at ~4 Ma allowed the Salt Range to become the range front of the Potwar. The removal of a large amount of molasse strata above the MFT ramp enhanced the role of salt in shaping the structural style of the Salt Range and Kalabagh Fault Zone. Salt accumulation and migration resulted in the formation of normal faults in both areas. Salt migration in the Kalabagh fault zone has triggered out-of-sequence movement on ramps in the Kohat. The amount of shortening calculated between the MBT and the SGT in Kohat is 75±5 km and between the MBT and the MFT in Potwar is 65±5 km. A comparable amount of shortening is accommodated in the Kohat and Potwar despite their different widths: 70 km Kohat and 150 km Potwar. In summary, this research suggests that deformation switched between different structures during the last ~15 Ma through different modes of fault propagation, resulting in different structural styles and the out-of-sequence development of Kohat and Potwar. N2 - Falten- und Überschiebungsgürtel sind charakteristische Merkmale von Kollisionsorogenen, die sich im Laufe der Zeit als Reaktion auf konvergente Spannungen in das Vorland vorbauen. Die Deformationsausbreitung in der oberen Kruste erfolgt durch die Verkürzung entlang von Falten und Überschiebungen. Die Bildung dieser Strukturen wird durch die mechanische Eigenschaft des Décollements (Abscherhorizonts), dem Aufbau des Grundgebirges, der strukturellen Vorprägung und der Geometrie des Verfomungskeils beeinflusst. Diese Faktoren steuern nicht nur die Verformungsabfolge, sondern führen auch zu unterschiedlichen Strukturen im Falten- und Überschiebungsgürtel. Der Himalaya Falten- und Überschiebungsgürtel zeigt signifikante Unterschiede im strukturellen Bau von Ost nach West. Die äußere Zone des Himalaya Falten- und Überschiebungsgürtel, auch Subhimalaya genannt, ist hinsichtlich der zeitliche Entwicklung und des strukturellen Baus in der Region von Bhutan, Nepal und Indien gut untersucht. Im Gegensatz dazu ist die Geologie des pakistanischen Subhimalayas erst in groben Zügen verstanden. Der Kohat- und der Potwar- Falten- und Überschiebungsgürtel (im Folgenden einfach Kohat und Potwar genannt) sind Teil der externe Sedimentationszone des Himalaya- Falten- und Überschiebungsgürtel in Pakistan. Die „Main Boundary Thrust“ (MBT) markiert ihre nördliche Grenze und zeigt, dass beide, sowohl Kohat als auch Potwar, trotz ihres unterschiedlichen strukturellen Baus durch eine gemeinsame, ins Vorland gerichteten Verformung des Himalaya-Orogens entstanden sind. Der Kontrast im strukturelle Bau wird nach Süden ausgeprägter, wo die aktive Kalabagh Seitenverschiebung die frontalen Deformationszonen Kohats und Potwars verbindet, die als „Surghar Range“ bzw. „Salt Range“ bekannt sind. Die „Surghar Range“ und die „Salt Range“ entwickeln sich oberhalb der Surghar Überschiebung (Surghar Thrust, SGT) und der frontalen Hauptüberschiebung (Main Frontal Thrust, MFT). Ziel dieser Studie ist es, die Deformationsentwicklung und den strukturellen Bau Kohats und Potwars als Beispiel für die Vielfalt der Entwicklung im frontalen Bereich von Orogenen zu entschlüsseln. Um den strukturellen Stil und die räumlich-zeitliche Entwicklung der Hauptstrukturen in Kohat und Potwar zu untersuchen, werden in dieser Studie Strukturmodellierungs- und Niedertemperatur-Thermochronologie-Methoden verwendet. Die Strukturmodellierung basiert auf der Erstellung bilanzierter Profile, deren Grundlage die Kombination von Oberflächengeologie, seismischen Reflexionsprofilen und Bohrlochdaten bildet. Die Niedertemperatur-Thermochronologie-Methoden gründen einerseits auf Apatit (U-Th-Sm)/He (AHe) und andererseits auf Apatit-Spaltspur (AFT) Datierungen. Die Resultate beider Methoden erlauben die zeitliche Rekonstruktion von Kohat und Potwar vom Paläozoikum bis zur jüngsten Geschichte. Die Ergebnisse dieser Studie deuten auf zwei Hauptereignisse in der Verformungsgeschichte hin. Das erste große Deformationsereignis steht im Zusammenhang mit der spätpaläozoischen Riftbildung im Zuge der Öffnung der Neotethys. Das zweite große Deformationsereignis steht im Zusammenhang mit der spätmiozänen bis pliozänen Entwicklung des Himalaya Falten- und Überschiebungsgürtel. Die spät-paläozoische Riftbildung wird mittels einer inversen thermischen Modellierung der Apatit-AFT und AHe-Alter aus der „Salt Range“ rekonstruiert. Der Prozess des Riftbildung verursachte Abschiebungen, die zur Exhumierung bzw. Erosion früh- bis mittelpaläozoischer Schichten führte und eine bedeutende Diskordanz zwischen kambrischen und permischen Schichten ausbildet, die heute in der „Salt Range“ aufgeschlossen ist. Diese im Spätpaläozoikum entstandenen Abschiebungen wurden dann während der miozän-pliozänen Bildung des Falten- und Überschiebungsgürtel reakiviert. Die Rekonstruktion der Strukturen, kombiniert mit der Datierung (AFT, AHe), deutet darauf hin, dass die Verformung um ca. 15±2 Ma auf der SGT-Rampe im südlichen Teil Kohats aktiv war. Diese erste Deformation entlang der SGT hat das Vorland an den Kohat-Verformungskeil geschweisst und bildet damit die neue Verformungsfront. Die MBT bildete um ca. 12±2 Ma die nördliche Grenze von Kohat und Potwar. Die Deformation breitete sich in südlicher Richtung von der MBT aus in Kohat auf zwei Décollements aus, während sich in Potwar ein einziges basales Décollement bildete. Die beiden parallelen Décollements in Kohat formten aktive Dachüberschiebungen aus, die zum disharmonischen Stil im oberen und unteren Teil des Profils führten. Die inkrementelle Verkürzung formte Duplex-Strukturen zwischen den beiden Décollements und Schuppen oberhalb der Dachüberschiebung. Auf die tektonische Verdickung durch die Duplex-Strukturen folgte die Abkühlung bzw. Exhumation oberhalb der Dachüberschiebung durch die Abtragung mächtiger Molasseschichten. Die Rekonstruktion der Strukturen zeigt, dass die Rampen, auf denen die Duplex-Strukturen in Kohat gebildet wurden, sich in Potwar als Frontallinien der frontalen Knickung fortsetzen. Das Fehlen der beiden parallelen Décollements in Potwar führte zur Erhaltung dicker Molassenschichten in der stratigraphischen Abfolge. Die Ergebnisse der Datierung deuten darauf hin, dass sich die Verformung dann von ca. 8 bis 3 Ma normal im nördlichen Teil von Kohat und Potwar in Richtung Süden ausbreitete. Die Verformung in Kohat war intensiver durch die Bildung eines kritischen Winkels im Deformationskeil, als die signifikante Auflast über dem oberen Décollement entfernt wurde. Der südliche Teil Potwars dagegen ist durch eine geringe interne Verfomung gekennzeichnet, hervorgerufen durch eine geringere Neigung der basalen Überschiebung (β≥3°) und das Vorhandensein von Salz an der Basis der stratigraphischen Abfolge. Dabei ist stratigraphische Abfolge innerhalb des Deformationskeils erhalten. Mit der Deformation entlang der MFT um ca. 4 Ma begann die Entwicklung der „Salt Range“ als frontale Deformationszone von Potwar. Die Abtragung dicker Molassenschichten über der MFT-Rampe verstärkte die Rolle des Salzes bei der Deformation der „Salt Range“ und der Kalabagh-Störungszone. In beiden Gebieten kam es zu Abschiebungen duch Salzakkumulation und Salzmigration. Die Salzmigration in der Kalabagh- Störungszone hat durchbrechende Überschiebungen entlang der Rampen in Kohat ausgelöst. Der Verkürzungsbetrag zwischen MBT und SGT beträgt für Kohat 75±5 km und für Potwar zwischen MBT und MFT 65±5 km. Sowohl Kohat und Potwar haben trotz ihrer unterschiedlichen räumlichen Ausdehnung (70 km Kohat und 150 km Potwar) eine vergleichbare Verkürzung erfahren. Zusammenfassend lässt sich sagen, dass diese Studie aufzeigt, wie die Verformung zwischen den einzelnen Strukturen in den letzten ~15 Ma, verursacht durch unterschiedliche Deformationsausbreitung, gesprungen ist und damit für die unterschiedlichen spezifischen Struktur-Stile und durchbrechende Deformationssequenzen in Kohat und Potwar verantwortlich ist. KW - Himalaya KW - folds KW - faults KW - décollement KW - exhumation KW - Himalaja KW - Falten KW - Störungen KW - Abschiebungshorizonte KW - Exhumierung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-440775 ER - TY - THES A1 - Borghini, Alessia T1 - Melt inclusions in mafic rocks as witnesses of metasomatism in the Bohemian Massif N2 - Orogenic peridotites represent portions of upper subcontinental mantle now incorporated in mountain belts. They often contain layers, lenses and irregular bodies of pyroxenite and eclogite. The origin of this heterogeneity and the nature of these layers is still debated but it is likely to involve processes such as transient melts coming from the crust or the mantle and segregating in magma conduits, crust-mantle interaction, upwelling of the asthenosphere and metasomatism. All these processes occur in the lithospheric mantle and are often related with the subduction of crustal rocks to mantle depths. In fact, during subduction, fluids and melts are released from the slab and can interact with the overlying mantle, making the study of deep melts in this environment crucial to understand mantle heterogeneity and crust-mantle interaction. The aim of this thesis is precisely to better constrain how such processes take place studying directly the melt trapped as primary inclusions in pyroxenites and eclogites. The Bohemian Massif, crystalline core of the Variscan belt, is targeted for these purposes because it contains orogenic peridotites with layers of pyroxenite and eclogite and other mafic rocks enclosed in felsic high pressure and ultra-high pressure crustal rocks. Within this Massif mafic rocks from two areas have been selected: the garnet clinopyroxenite in orogenic peridotite of the Granulitgebirge and the ultra-high pressure eclogite in the diamond-bearing gneisses of the Erzgebirge. In both areas primary melt inclusions were recognized in the garnet, ranging in size between 2-25 µm and with different degrees of crystallization, from glassy to polycrystalline. They have been investigated with Micro Raman spectroscopy and EDS mapping and the mineral assemblage is kumdykolite, phlogopite, quartz, kokchetavite, phase with a main Raman peak at 430 cm-1, phase with a main Raman peak at 412 cm-1, white mica and calcite with some variability in relative abundance depending on the case study. In the Granulitgebirge osumilite and pyroxene are also present, whereas calcite is one of the main phases in the Erzgebirge. The presence of glass and the mineral assemblage in the nanogranitoids suggest that they were former droplets of melt trapped in the garnet while it was growing. Glassy inclusions and re-homogenized nanogranitoids show a silicate melt that is granitic, hydrous, high in alkalis and weakly peraluminous. The melt is also enriched in both case studies in Cs, Pb, Rb, U, Th, Li and B suggesting the involvement of crustal component, i.e. white mica (main carrier of Cs, Pb, Rb, Li and B), and a fluid (Cs, Th and U) in the melt producing reaction. The whole rock in both cases mainly consists of garnet and clinopyroxene with, in Erzgebirge samples, the additional presence of quartz both in the matrix and as a polycrystalline inclusion in the garnet. The latter is interpreted as a quartz pseudomorph after coesite and occurs in the same microstructural position as the melt inclusions. Both rock types show a crustal and subduction zone signature with garnet and clinopyroxene in equilibrium. Melt was likely present during the metamorphic peak of the rock, as it occurs in garnet. Our data suggest that the processes most likely responsible for the formation of the investigated rocks in both areas is a metasomatic reaction between a melt produced in the crust and mafic layers formerly located in the mantle wedge for the Granulitgebirge and in the subducted continental crust itself in the Erzgebirge. Thus metasomatism in the first case took place in the mantle overlying the slab, whereas in the second case metasomatism took place in the continental crust that already contained, before subduction, mafic layers. Moreover, the presence of former coesite in the same microstructural position of the melt inclusions in the Erzgebirge garnets suggest that metasomatism took place at ultra-high pressure conditions. Summarizing, in this thesis we provide new insights into the geodynamic evolution of the Bohemian Massif based on the study of melt inclusions in garnet in two different mafic rock types, combining the direct microstructural and geochemical investigation of the inclusions with the whole-rock and mineral geochemistry. We report for the first time data, directly extracted from natural rocks, on the metasomatic melt responsible for the metasomatism of several areas of the Bohemian Massif. Besides the two locations here investigated, belonging to the Saxothuringian Zone, a signature similar to the investigated melt is clearly visible in pyroxenite and peridotite of the T-7 borehole (again Saxothuringian Zone) and the durbachite suite located in the Moldanubian Zone. N2 - Die Präsenz orogener Peridotite - metamorphosierte Bestanteile des Mantels -, die in Gebirgen auftreten, belegt, dass der Erdmantel an Kontinent-Kontinent-Kollisionen beteiligt sein kann. Solche orogenen Peridotite sind häufig heterogen, da sie Pyroxenit- und Eklogitlagen und Linsen enthalten, d.h. Hochdruckgesteine, die aus Granat und Klinopyroxen bestehen. Die meisten Prozesse, die für diese Heterogenität verantwortlich sind, involvieren Schmelzen, die durch den Mantel migrieren und dabei zu dessen Metasomatose oder zu der Anreicherung von Granat und Klinopyroxen in Adern und Kanälen führen. Ein weiterer Prozess kann auch das Recyceln subduzierter ozeanischer Kruste im Erdmantel sein. Im Allgemeinen finden all diese Prozesse während der Subduktion der Kruste in Manteltiefe statt. Unter diesen Bedingungen stehen die Krustengesteine im direkten Kontakt mit den Mantelgesteinen und die dabei freigesetzten Fluide oder Schmelzen können mit den Peridotiten wechselwirken. Letztere können anschließend von den Krustengesteinen aufgenommen und zur Erdoberfläche exhumiert werden, wo sie untersucht werden können. Diese Arbeit fokussiert sich vor allem auf die Untersuchung der Pyroxenit- und Eklogitbildung sowie auf die Wechselwirkung zwischen Schmelze und Gestein während der Subduktion der Kontinentalkruste in Manteltiefe. Dafür ist das Böhmische Massiv die ideale geologische Umgebung, da es erhebliche Mengen an Pyroxeniten und Eklogiten enthält, die sich in einigen Fällen in orogenen Peridotiten befinden, und die alle in einer ehemals tief subduziertern kontinentalern Kruste eingegliedert wurden. Um die Zielstellung zu erreichen, wurde die Schmelze mit einem neuartigen Ansatz untersucht, wobei diese hier direkt in primären Schmelzeinschlüssen, die im Granat eingeschlossenen sind, untersucht wird. Es wurden zwei Gebiete mit Pyroxeniten und Eklogiten, die Schmelzeinschlüsse enthalten, ausgewählt, ein Pyroxenit aus dem Granulitgebirge und ein Ultrahochdruck-Eklogit aus dem Erzgebirge (Sachsen, Deutschland). Die Einschlüsse bestehen aus einer granitischen, wasserhaltigen Schmelze krustaler Herkunft. Das Auftreten der im Granat unregelmäßig verteilten Einschlüsse bestätigt das Vorhandensein von Schmelze während der Peakmetamorphose. Da die Schmelzen in beiden Fällen ähnlich sind, schlussfolgern wir daraus, dass beide Gesteinsarten durch metasomatische Prozesse infolge der Wechselwirkung von silikatreicher Schmelze und mafischen Lagen gebildete wurden. Im Granulitgebirge ging die Schmelze eine Wechselwirkung mit mafischen Lagen im Mantel ein und erst später wurde der Wirtsperidotit einschließlich der neugebildeten Pyroxenit- und Eklogitlagen in die subduzierte Kruste eingebaut. Im Fall der Pyroxenite und Eklogite des Erzgebirges fand die Metasomatose stattdessen in der kontinentalen Kruste statt. Hier ging die Schmelze eine Wechselwirkung mit mafischen Lagen ein, die sich bereits vor der Subduktion in der Kruste befunden hatten. Im letzteren Fall belegt der Hinweis auf ehemaligen Coesit , d. h. auf ein Mineral, das Tiefen >95 km anzeigt, welches anwesend war während der Metasomatose, dass die Prozesse in größeren Tiefen stattfanden als im Granulitgebirge. T2 - Schmelzeinschlüsse in mafischen Gesteinen als Zeugen von Metasomatose im Böhmischen Massiv KW - Petrology KW - Petrologie KW - Metamorphism KW - Melt inclusions KW - Metasomatism KW - Metamorphose KW - Schmelzeinschlüsse KW - Metasomatose Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473639 ER - TY - THES A1 - Senftleben, Robin T1 - Earth's magnetic field over the last 1000 years N2 - To investigate the reliability and stability of spherical harmonic models based on archeo/-paleomagnetic data, 2000 Geomagnetic models were calculated. All models are based on the same data set but with randomized uncertainties. Comparison of these models to the geomagnetic field model gufm1 showed that large scale magnetic field structures up to spherical harmonic degree 4 are stable throughout all models. Through a ranking of all models by comparing the dipole coefficients to gufm1 more realistic uncertainty estimates were derived than the authors of the data provide. The derived uncertainty estimates were used in further modelling, which combines archeo/-paleomagnetic and historical data. The huge difference in data count, accuracy and coverage of these two very different data sources made it necessary to introduce a time dependent spatial damping, which was constructed to constrain the spatial complexity of the model. Finally 501 models were calculated by considering that each data point is a Gaussian random variable, whose mean is the original value and whose standard deviation is its uncertainty. The final model arhimag1k is calculated by taking the mean of the 501 sets of Gauss coefficients. arhimag1k fits different dependent and independent data sets well. It shows an early reverse flux patch at the core-mantle boundary between 1000 AD and 1200 AD at the location of the South Atlantic Anomaly today. Another interesting feature is a high latitude flux patch over Greenland between 1200 and 1400 AD. The dipole moment shows a constant behaviour between 1600 and 1840 AD. In the second part of the thesis 4 new paleointensities from 4 different flows of the island Fogo, which is part of Cape Verde, are presented. The data is fitted well by arhimag1k with the exception of the value at 1663 of 28.3 microtesla, which is approximately 10 microtesla lower than the model suggest. N2 - Um die Stabilität und Zuverlässigkeit von sphärisch harmonischen Erdmagnetfeldmodellen, die auf paleomagnetischen und archeomagnetischen Daten basieren zu untersuchen wurden 2000 Erdmagnetfeldmodelle berechnet. Jedes dieser Modelle berechnet sich aus Daten, die mit zufälligen Unsicherheiten in die Inversion eingehen. Ein Vergleich dieser Modelle zum historischen Erdmagnetfeldmodell gufm1 zeigt, dass großflächige magnetische Strukturen bis zum sphärischen harmonischen Grad 4 stabil in allen Modellen sind. Ein Ranking der 2000 Modelle wurde verwendet, um realistischere Fehlerabschätzungen der Daten zu bekommen, als die, die von den Autoren angebeben werden. Diese Fehlerabschätzungen werden für die weitere Modellierung benutzt, welche historische und paleo-/archeomagnetiche Daten kombiniert. Der große Unterschied in der Anzahl der Daten und der räumlichen Verteilung dieser sehr verschiedenen Datenquellen machte es notwendig, eine zeitabhängige räumliche Dämpfung einzuführen. Diese ist so konstruiert, dass die räumlich Komplexität des Modelles in einem bestimmten Zeitintervall festgelegt wird. 501 Modelle wurde berechnet, indem jeder Datenpunkt als gaußsche Zufallsvariable gesehen wird mit dem Originalwert als Mittelwert und die Fehlerabschätzung als Standardabweichung. Das finale Modell arhimag1k berechnet sich aus dem Mittelwert der Gaußkoeffizienten aller 501 Modelle. arhimag1k fittet verschiedene abhängige und unabhängige Datensätze gut. Es zeigt eine frühe Anomaly an der Kern-Mantel Grenze zwischen 1000 und 1200 AD an der Lokation, wo auch die heutige Südatlantische Anomaly liegt. Eine andere interessante Auffälligkeit ist eine starke radiale Magnetfeldkomponente an der Kern-Mantel Grenze zwischen 1200 und 1400 AD über Grönland. Das Dipolmoment zeigt ein konstantes Verhalten von 1600 bis 1840 AD. Im zweiten Teil der Arbeit werden 4 neue Paleointensitäten der Insel Fogo, welches Teil von Kap Verde ist, presentiert. Diese neuen Daten werden gut von dem Modell arhimag1k gefittet, außer der Wert von 1663 AD mit 28.3 mikrotesla , welcher etwa 10 mikrotesla niedriger ist, als das Modell zeigt. T2 - Erdmagnetfeld der letzten 1000 Jahre KW - Earth's magnetic field KW - archeomagnetism KW - paleomagnetism KW - modelling KW - spherical harmonics KW - Erdmagnetfeld KW - Archäomagnetismus KW - Paläomagnetismus KW - Modellierung KW - Kugelflächenfunktionen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473150 ER - TY - THES A1 - Angelopoulos, Michael T1 - Mechanisms of sub-aquatic permafrost evolution in Arctic coastal environments BT - field observations and modelling of submerged ice-rich permafrost deposits and thermokarst lagoons in northeastern Siberia N2 - Subsea permafrost is perennially cryotic earth material that lies offshore. Most submarine permafrost is relict terrestrial permafrost beneath the Arctic shelf seas, was inundated after the last glaciation, and has been warming and thawing ever since. It is a reservoir and confining layer for gas hydrates and has the potential to release greenhouse gases and affect global climate change. Furthermore, subsea permafrost thaw destabilizes coastal infrastructure. While numerous studies focus on its distribution and rate of thaw over glacial timescales, these studies have not been brought together and examined in their entirety to assess rates of thaw beneath the Arctic Ocean. In addition, there is still a large gap in our understanding of sub-aquatic permafrost processes on finer spatial and temporal scales. The degradation rate of subsea permafrost is influenced by the initial conditions upon submergence. Terrestrial permafrost that has already undergone warming, partial thawing or loss of ground ice may react differently to inundation by seawater compared to previously undisturbed ice-rich permafrost. Heat conduction models are sufficient to model the thaw of thick subsea permafrost from the bottom, but few studies have included salt diffusion for top-down chemical degradation in shallow waters characterized by mean annual cryotic conditions on the seabed. Simulating salt transport is critical for assessing degradation rates for recently inundated permafrost, which may accelerate in response to warming shelf waters, a lengthening open water season, and faster coastal erosion rates. In the nearshore zone, degradation rates are also controlled by seasonal processes like bedfast ice, brine injection, seasonal freezing under floating ice conditions and warm freshwater discharge from large rivers. The interplay of all these variables is complex and needs further research. To fill this knowledge gap, this thesis investigates sub-aquatic permafrost along the southern coast of the Bykovsky Peninsula in eastern Siberia. Sediment cores and ground temperature profiles were collected at a freshwater thermokarst lake and two thermokarst lagoons in 2017. At this site, the coastline is retreating, and seawater is inundating various types of permafrost: sections of ice-rich Pleistocene permafrost (Yedoma) cliffs at the coastline alternate with lagoons and lower elevation previously thawed and refrozen permafrost basins (Alases). Electrical resistivity surveys with floating electrodes were carried out to map ice-bearing permafrost and taliks (unfrozen zones in the permafrost, usually formed beneath lakes) along the diverse coastline and in the lagoons. Combined with the borehole data, the electrical resistivity results permit estimation of contemporary ice-bearing permafrost characteristics, distribution, and occasionally, thickness. To conceptualize possible geomorphological and marine evolutionary pathways to the formation of the observed layering, numerical models were applied. The developed model incorporates salt diffusion and seasonal dynamics at the seabed, including bedfast ice. Even along coastlines with mean annual non-cryotic boundary conditions like the Bykovsky Peninsula, the modelling results show that salt diffusion minimizes seasonal freezing of the seabed, leading to faster degradation rates compared to models without salt diffusion. Seasonal processes are also important for thermokarst lake to lagoon transitions because lagoons can generate cold hypersaline conditions underneath the ice cover. My research suggests that ice-bearing permafrost can form in a coastal lagoon environment, even under floating ice. Alas basins, however, may degrade more than twice as fast as Yedoma permafrost in the first several decades of inundation. In addition to a lower ice content compared to Yedoma permafrost, Alas basins may be pre-conditioned with salt from adjacent lagoons. Considering the widespread distribution of thermokarst in the Arctic, its integration into geophysical models and offshore surveys is important to quantify and understand subsea permafrost degradation and aggradation. Through numerical modelling, fieldwork, and a circum-Arctic review of subsea permafrost literature, this thesis provides new insights into sub-aquatic permafrost evolution in saline coastal environments. KW - permafrost KW - subsea KW - submarine KW - thermokarst KW - lagoons KW - salt diffusion KW - electrical resistivity Y1 - 2020 ER - TY - THES A1 - Friese, André T1 - Biogeochemistry of ferruginous sediments of Lake Towuti, Sulawesi, Indonesia N2 - Ferruginous conditions were a prominent feature of the oceans throughout the Precambrian Eons and thus throughout much of Earth’s history. Organic matter mineralization and diagenesis within the ferruginous sediments that deposited from Earth’s early oceans likely played a key role in global biogeochemical cycling. Knowledge of organic matter mineralization in ferruginous sediments, however, remains almost entirely conceptual, as modern analogue environments are extremely rare and largely unstudied, to date. Lake Towuti on the island of Sulawesi, Indonesia is such an analogue environment and the purpose of this PhD project was to investigate the rates and pathways of organic matter mineralization in its ferruginous sediments. Lake Towuti is the largest tectonic lake in Southeast Asia and is hosted in the mafic and ultramafic rocks of the East Sulawesi Ophiolite. It has a maximum water depth of 203 m and is weakly thermally stratified. A well-oygenated surface layer extends to 70 m depth, while waters below 130 m are persistently anoxic. Intensive weathering of the ultramafic catchment feeds the lake with large amounts of iron(oxy)hydroxides while the runoff contains only little sulfate, leading to sulfate-poor (< 20 µM) lake water and anoxic ferruginous conditions below 130 m. Such conditions are analogous to the ferruginous water columns that persisted throughout much of the Archean and Proterozoic eons. Short (< 35 cm) sediment cores were collected from different water depths corresponding to different bottom water redox conditions. Also, a drilling campaign of the International Continental Scientific Drilling Program (ICDP) retrieved a 114 m long sediment core dedicated for geomicrobiological investigations from a water depth of 153 m, well below the depth of oxygen penetration at the time of sampling. Samples collected from these sediment cores form the fundament of this thesis and were used to perform a suite of biogeochemical and microbiological analyses. Geomirobiological investigations depend on uncontaminated samples. However, exploration of subsurface environments relies on drilling, which requires the use of a drilling fluid. Drilling fluid infiltration during drilling can not be avoided. Thus, in order to trace contamination of the sediment core and to identify uncontaminated samples for further analyses a simple and inexpensive technique for assessing contamination during drilling operations was developed and applied during the ICDP drilling campaign. This approach uses an aqeous fluorescent pigment dispersion commonly used in the paint industry as a particulate tracer. It has the same physical properties as conventionally used particulate tracers. However, the price is nearly four orders of magnitude lower solving the main problem of particulate tracer approaches. The approach requires only a minimum of equipment and allows for a rapid contamination assessment potentially even directly on site, while the senstitivity is in the range of already established approaches. Contaminated samples in the drill core were identified and not included for further geomicrobiological investigations. Biogeochemical analyses of short sediment cores showed that Lake Towutis sediments are strongly depleted in electron acceptors commonly used in microbial organic matter mineralization (i.e. oxygen, nitrate, sulfate). Still, the sediments harbor high microbial cell densities, which are a function of redox conditions of Lake Towuti’s bottom water. In shallow water depths bottom water oxygenation leads to a higher input of labile organic matter and electron acceptors like sulfate and iron, which promotes a higher microbial abundance. Microbial analyses showed that a versatile microbial community with a potential to perform metabolisms related to iron and sulfate reduction, fermentation as well as methanogenesis inhabits Lake Towuti’s surface sediments. Biogeochemical investigations of the upper 12 m of the 114 m sediment core showed that Lake Towuti’s sediment is extremely rich in iron with total concentrations up to 2500 µmol cm-3 (20 wt. %), which makes it the natural sedimentary environment with the highest total iron concentrations studied to date. In the complete or near absence of oxygen, nitrate and sulfate, organic matter mineralization in ferruginous sediments would be expected to proceed anaerobically via the energetically most favorable terminal electron acceptors available - in this case ferric iron. Astonishingly, however, methanogenesis is the dominant (>85 %) organic matter mineralization process in Lake Towuti’s sediment. Reactive ferric iron known to be available for microbial iron reduction is highly abundant throughout the upper 12 m and thus remained stable for at least 60.000 years. The produced methane is not oxidized anaerobically and diffuses out of the sediment into the water column. The proclivity towards methanogenesis, in these very iron-rich modern sediments, implies that methanogenesis may have played a more important role in organic matter mineralization thoughout the Precambrian than previously thought and thus could have been a key contributor to Earth’s early climate dynamics. Over the whole sequence of the 114 m long sediment core siderites were identified and characterized using high-resolution microscopic and spectroscopic imaging together with microchemical and geochemical analyses. The data show early diagenetic growth of siderite crystals as a response to sedimentary organic matter mineralization. Microchemical zoning was identified in all siderite crystals. Siderite thus likely forms during diagenesis through growth on primary existing phases and the mineralogical and chemical features of these siderites are a function of changes in redox conditions of the pore water and sediment over time. Identification of microchemical zoning in ancient siderites deposited in the Precambrian may thus also be used to infer siderite growth histories in ancient sedimentary rocks including sedimentary iron formations. N2 - Während des Präkambriums und damit während des Großteils der Erdgeschichte, zeichneten sich die Ozeane durch ihren hohen Eisengehalt aus. Sowohl die Remineralisierung von organischem Material, als auch die Diagenese in den Sedimenten, die in den frühen Ozeanen der Erde abgelagert wurden, hatte höchstwahrscheinlich bedeutende Auswirkungen auf die globalen biogeochemischen Stoffkreisläufe. Unser Verständnis des Abbaus von organischem Material in eisenhaltigen Sedimenten ist jedoch sehr begrenzt, da moderne Analogsysteme extrem selten sind und bis heute nicht erforscht wurden. Der Towutisee auf der Insel Sulawesi in Indonesien ist ein solches modernes Analogsystem und Ziel dieser Doktorarbeit war es, die Raten und Pfade des Abbaus von organischem Material in den modernen eisenhaltigen Sedimenten des Towutisees zu erforschen. Der Towutisee ist der größte tektonische See in Südostasien und ist von mafischen und ultramafischen Gesteinen des Ost-Sulawesi-Ophioliten umgeben. Er hat eine maximale Wassertiefe von 203 m und ist schwach thermisch stratifiziert. Bis zu einer Tiefe von 70 m herrschen oxische Bedingungen, während die Wassersäule unterhalb von 130 m permanent anoxisch ist. Intensive Verwitterungsprozesse des ultramafischen Einzugsgebietes führen zu einem hohen Eintrag von Eisen(oxy)hydroxiden, während der Oberflächenabfluss nur wenig Sulfat enthält. Die Konzentrationen von Sulfat in der Wassersäule sind daher außergewöhnlich gering (< 20µM). Diese physikochemischen Verhältnisse sind analog zu denen der Ozeane des Archaikums und des Proterozoikums. Kurze (< 35 cm) Sedimentkerne wurden von verschiedenen Wassertiefen und unterschiedlichen Redox-Bedingungen des Bodenwassers entnommen. Darüber hinaus, wurde, im Zuge einer Bohrkampagne des International Continental Scientific Drilling Programs (ICDP) am Towutisee, ein 114 m langer Sedimentkern aus einer Wassertiefe von 153m, also deutlich unterhalb des Sauerstoffgradienten, erbohrt. Dieser war ausschließlich für geomikrobiologische Probenahmen und Untersuchungen vorgesehen. Die Proben, die aus diesen Sedimentkernen entnommen wurden, bilden das Fundament dieser Doktorarbeit und wurden für biogeochemische und mikrobiologische Untersuchungen verwendet. Unkontaminierte Proben sind für geomikrobiologische Untersuchungen unabdingbar. Das Erforschen von Gebieten unterhalb der Oberfläche ist jedoch auf Bohrungen angewiesen, welche wiederum den Einsatz einer Bohrspülung erfordern. Leider ist es unvermeidlich, dass diese im Zuge des Bohrprozesses in den erbohrten Sedimentkern eindringen. Die einzige Möglichkeit unkontaminierte Proben zu gewinnen ist es daher, den Grad der Kontamination des Bohrkerns nachzuverfolgen und unkontaminierte Proben für weitere Analysen zu identifizieren. Dazu wurde im Zuge dieser Doktorarbeit eine einfache und kostengünstige Methode zur Kontaminationskontrolle während Bohroperationen entwickelt und während der ICDP Bohrkampagne auf dem Towutisee angewandt. Als Tracer kam eine Farbe zum Einsatz, deren physikalische Eigenschaften denen von partikulären Tracern ähnelt. Der Preis dieser Farbe ist im Vergleich zu bisher verwendeten partikulären Tracern, jedoch vier Größenordnungen geringer und löst damit das Hauptproblem dieser Tracer. Die Methode benötigt nur ein Mindestmaß an Equipment und ermöglicht eine schnelle Identifizierung von Kontaminationen, möglicherweise sogar vor Ort. Die Sensitivität der Methode ist im Bereich von etablierten Kontaminationskontrollen. Kontaminierte Proben des erbohrten Sedimentkerns wurden mit dieser Methode identifiziert und nicht für weitere geomikrobiologische Untersuchungen verwendet. Biogeochemische Analysen der Kurzkerne zeigen, dass die Sedimente des Towutisees sehr arm an Elektronenakzeptoren sind, die für den mikrobiellen Abbau von organischem Material verwendet werden (d.h. Sauerstoff, Nitrat und Sulfat). Nichtsdestotrotz zeichnen sich die Sedimente des Towutisees durch hohe Zellzahlen aus, die von den Redox-Bedingungen des Bodenwassers abhängig sind. In niedrigen Wassertiefen führt oxygeniertes Bodenwasser zu einem erhöhten Eintrag von labilem organischen Material sowie Elektronenakzeptoren wie Eisen und Sulfat, wodurch hohe Zellzahlen resultieren. Mikrobiologische Analysen zeigen, dass die Sedimente des Towutisees durch eine vielseitige, mikrobielle Gemeinschaft bevölkert werden, die in der Lage ist, Stoffwechsel, wie Eisenreduktion, Sulfatreduktion, Fermentation sowie Methanogenese auszuführen. Biogeochemische Untersuchungen der oberen 12 m des 114 m langen Sedimentkerns zeigen, dass die Sedimente des Towutisees mit 2500 µM cm-3 extrem hohe Eisengehalte (20 Gew. %) aufweisen und damit das eisenreichste natürliche sedimentäre System sind, welches bisher erforscht wurde. Nach unserem bisherigen Verständnis über biogeochemische Stoffkreisläufe sollte, in Abwesenheit von Sauerstoff, Nitrat oder Sulfat, organisches Material über den energetisch günstigsten verfügbaren Elektronenakzeptoren abgebaut werden – in dem Fall Eisen (III). Erstaunlicherweise jedoch, ist Methanogenese der dominante (> 85 %) Remineralisierungsprozess in den Sedimenten des Towutisees. Mikrobiell theoretisch verfügbares reaktives Eisen (III) hingegen bleibt stabil über die oberen 12 m des Sedimentkerns und damit über mehr als 60.000 Jahre. Produziertes Methan wird nicht anaerob oxidiert und diffundiert aus dem Sediment in die Wassersäule. Die Dominanz von Methanogenese in diesen eisenreichen Sedimenten impliziert, dass dieser Prozess im Präkambrium vermutlich eine viel bedeutendere Rolle in der Remineralisierung von organischem Material eingenommen hat, als bisher angenommen. Methan, als bedeutendes Treibhausgas, war demnach möglicherweise ein wichtiger Regulator des Klimas in der frühen Erdgeschichte. T2 - Biogeochemie eisenreicher Sedimente des Lake Towuti, Sulawesi, Indonesien KW - Geomicrobiology KW - Biogeochemistry KW - Organic matter mineralization KW - Early Earth KW - Contamination Control KW - Biogeochemie KW - Kontaminationskontrolle KW - Frühe Erdgeschichte KW - Geomikrobiologie KW - Mikrobieller Abbau von organischen Material Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475355 ER - TY - THES A1 - Nardini, Livia T1 - Influence of heterogeneities on the initiation of shear zones in the ductile regime N2 - The current thesis contains the results from two experimental and one modelling study focused on the topic of ductile strain localization in the presence of material heterogeneities. Localization of strain in the high temperature regime is a well known feature of rock deformation occurring in nature at different scales and in a variety of lithologies. Large scale shear zones at the roots of major crustal fault zones are considered responsible for the activity of plate tectonics on our planet. A large number of mechanisms are suggested to be associated with strain softening and nucleation of localization. Among these, the presence of material heterogeneities within homogeneous host rocks is frequently observed in field examples to trigger shear zone development. Despite a number of studies conducted on the topic, the mechanisms controlling initiation and evolution of localization are not fully understood yet. We investigated, experimentally and by means of numerical modelling, phenomenological and microphysical aspects of high temperature strain localization in a homogeneous body containing single and paired inclusions of weaker material. A monomineralic carbonate system composed of Carrara marble (homogeneous, strong matrix) and Solnhofen limestone (weak planar inclusions) is selected for our studies based on its versatility as an experimental material and on the frequent occurrence of carbonate rocks at the core of natural shear zones. To explore the influence of different loading conditions on heterogeneity-induced high temperature shear zones we conducted torsion experiments under constant twist (deformation) rate and constant torque (stress) conditions in a Paterson-type deformation apparatus on hollow cylinders of marble containing single planar inclusions of limestone. At the imposed experimental conditions (900 ◦C temperature and 400 MPa confining pressure) both materials deform plastically and the marble is ≈ 9 times stronger than the limestone. The viscosity contrast between the two materials induces a perturbation of the stress field within the marble matrix at the tip of the planar inclusion. Early on along the deformation path (at bulk shear strains ≈ 0.3), heterogeneous distribution of strain can be observed under both loading conditions and a small area of incipient strain localization is formed at the tip of the weak limestone inclusion. Strongly deformed grains, incipient dynamic recrystallization and a weak crystallographic preferred orientation characterize the marble within an area a few mm in front of the inclusion. As the bulk strain is increased (up to γ ≈ 1), the area of microstructural modification is expanded along the inclusion plane, the texture strengthens and grain size refinement by dynamic recrystallization becomes pervasive. Locally, evidences for coexisting brittle deformation are also observed regardless of the imposed loading conditions. A shear zone is effectively formed within the deforming Carrara marble, its geometry controlled by the plane containing the thin plate of limestone. Thorough microstructural and textural analysis, however, do not reveal substantial differences in the mechanisms or magnitude of strain localization at the different loading conditions. We conclude that, in the presence of material heterogeneities capable of inducing strain softening, the imposed loading conditions do not affect ductile localization in its nucleating and transient stages. As the ultimate goal of experimental rock deformation is the extrapolation of results to geologically relevant time and space scales, we developed 2D numerical models reproducing (and benchmarked to) our experimental results. Our cm-scaled models have been implemented with a first-order strain-dependent softening law to reproduce the effect of rheological weakening in the deforming material. We successfully reproduced the local stress concentration at the inclusion tips and the strain localization initiated in the marble matrix. The heterogeneous distribution of strain and its evolution with imposed bulk deformation (i.e. the shape and extent of the nucleating shear zone) are observed to depend on the degree of softening imposed to the deforming matrix. When a second (artificial) softening step is introduced at elevated bulk strains in the model, the formation of a secondary high strain layer is observed at the core of the initial shear zone, analogous to the development of ultramylonite bands in high strain natural shear zones. Our results do not only reproduce the nucleation and transient evolution of a heterogeneity-induced high temperature shear zone with high accuracy, but also confirm the importance of introducing reliable softening laws capable of mimicking strain weakening to numerical models of crustal scale ductile processes. Material heterogeneities inducing strain localization in the field are often consisting of brittle precursors (joints and fractures). More generally, the interaction of brittle and ductile deformation mechanisms and its effect on the localization of strain have been a key topic in the structural geology community for a long time. The positive feedback between (micro)fracturing and ductile strain localization is a well recognized effect in a number of field examples. We experimentally investigated the influence of brittle deformation on the initiation and evolution of high temperature shear zones in a strong matrix containing pairs of weak material heterogeneities. Our Carrara marble-Solnhofen limestone inclusions system was tested in triaxial compression under constant strain rate and high temperature (900 ◦C) conditions in a Paterson deformation apparatus. The inclusion pairs were arranged in non-overlapping step-over geometries of either compressional or extensional nature. Experimental runs were conducted at different confining pressures (30, 50, 100 and 300 MPa) to induce various amounts of brittle deformation within the marble matrix. At low confinement (30 and 50 MPa) abundant brittle deformation is observed in all configurations, but the spatial distribution of cracks is dependent on the kinematics of the step-over region: concentrated along the shearing plane between the inclusions in the extensional samples, or broadly distributed around the inclusions but outside the step-over region in the compressional configuration. Accordingly, brittle-assisted ductile processes tend to localize deformation along the inclusions plane in the extensional geometry or to distribute widely across large areas of the matrix in the compressional step-over. At pressures of 100 and 300 MPa fracturing is mostly suppressed in both configurations and strain is accommodated almost entirely by viscous creep. In extensional samples this leads to progressive de-localization with increasing confinement. Our results show that, while ductile localization of strain is indeed more efficient where assisted by brittle processes, these latter are only effective if themselves heterogeneously distributed, ultimately a function of the local stress perturbations. N2 - Die vorliegende Doktorarbeit umfasst Ergebnisse von zwei experimentellen und einer Modellierungsstudie. Diese befassen sich mit der Lokalisierung von duktilen Verformungen, hervorgerufen durch unterschiedliche Materialeigenschaften. Die Lokalisierung von Verformungen im Hochtemperaturbereich in unterschiedlichen Maßstäben und in einer Vielzahl von Lithologien ist ein bekanntes Merkmal der natürlichen Gesteinsdeformationen. So wird beispielsweise die Aktivität der Plattentektonik unseres Planeten durch weiträumige Scherzonen am Grund dieser Plattengrenzen verantwortlich gemacht. Dabei wird eine große Anzahl von Mechanismen mit der durch die Verformung hervorgerufenen Materialermüdung und der Ausbildung der Lokalisierung in Verbindung gebracht. Dabei wird unter diesen Mechanismen das Vorhandensein von Materialheterogenitäten innerhalb eines Gesteins häufig als Auslöser für die Ausbildung von Scherzonen beobachtet. Obwohl bereits Studien zu diesem Thema durchgeführt wurden, sind die kontrollierenden Mechanismen, die für die Initiierung und Entwicklung der Lokalisierung zuständig sind, bis heute nicht vollumfänglich verstanden. Aus diesem Grund wurden im Rahmen der vorgelegten Dissertation phänomenologische und mikrophysikalische Aspekte der Lokalisierung von Verformungen im Hochtemperaturbereich in einem homogenen Gesteinskörper, der mit einfachen und gepaarten Inklusionen aus weicheren Material versehen wurde, experimentell und unter Hilfenahme von numerischen Modellen untersucht. Da Karbonatgesteine häufig am Ursprung natürlicher Scherzonen auftreten und diese für ihre Vielseitigkeit als Experimentiermaterial bekannt sind, wurde ein monomineralisches Karbonatsystem, bestehend aus Carrara Marmor (homogene, starke Matrix) und Solnhofen Kalkstein (schwache Inklusionen) als zu untersuchendes Probenmaterial für diese Studie gewählt. Um den Einfluss unterschiedlicher Deformationsbedingungen auf die, durch die Materialheterogenität hervorgerufenen Scherzonen im Hochtemperaturbereich zu untersuchen, wurden Torsionsexperimente bei konstanter Torsionsrate und konstantem Drehmoment in einer Paterson-Deformationsapparatur an hohlen Carrara Marmorzylindern mit einer ebenen Inklusion bestehend aus Kalkstein durchgeführt. Unter den vorgegebenen Randbedingungen (Temperatur = 900 ◦C, Manteldruck = 400 MPa) verformten sich beide Materialien plastisch, wobei die Festigkeit des Marmors in etwa dem neunfachen der Kalksteinfestigkeit entspricht. An der Spitze der ebenen Kalksteininklusion wird durch den Viskositätskontrast der beiden Materialien dadurch eine Störung des Spannungsfeldes in der Marmormatrix hervorgerufen. In der frühen Phase der Deformation (Scherverformung γ ≈ 0.3) kann eine heterogene Verteilung der Verformungen in der gesamten Probe bei beiden Experimenttypen beobachtet werden. Zusätzlich beginnt sich an der Spitze der schwächeren Kalksteininklusion ein Bereich mit lokaler Verformung in der Marmormatrix auszubilden. Dieser ist durch stark deformierte Mineralkörner, beginnende dynamische Rekristallisation und einer schwach ausgeprägten kristallographisch bevorzugten Ausrichtung innerhalb einer Fläche weniger Millimeter charakterisiert. Mit ansteigender Gesamtverformung (γ ≈ 1) erweitert sich die Fläche der mikrostrukturellen Modifikationen entlang der Inklusionsebene. Zusätzlich konnten eine verfestigte Textur und eine Verfeinerung der Korngröße aufgrund dynamischer Rekristallisation beobachtet werden. Lokale Anzeichen für eine gleichzeitige spröde Verformung konnten, unabhängig von den Deformationsbedingungen, ebenfalls festgestellt werden. Innerhalb des deformierten Marmors bildete sich eine Scherzone aus, deren Geometrie maßgeblich durch die Ebene der Kalksteininklusion kontrolliert wird. Sorgfältig durchgeführte mikrostrukturelle Analysen zeigten jedoch keine wesentlichen Unterschiede der Mechanismen oder dem Ausmaß der Lokalisierung der Verformung bei unterschiedlichen Deformationsbedingungen. Daraus lässt sich schließen, dass bei dem Vorhandensein von Materialheterogenitäten, welche eine verformungsbedingte Materialermüdung hervorrufen können, die verwendeten Deformationsbedingungen keinen Einfluss auf die Lokalisierung duktiler Deformation in ihrer Entstehung und übergangsphasen haben. Da für gewöhnlich die Durchführung von Deformationsexperimenten auf die Extrapolation der gewonnenen Ergebnisse auf geologische Zeiträume abzielt, wurden zwei- dimensionale numerische Modelle entwickelt, welche in der Lage sind die aufgenommenen experimentellen Daten zu reproduzieren und zu bewerten. Diese, auf dem Zentimetermaßstab skalierten Modelle wurden mit einem verformungsbasierten Ermüdungsgesetz erster Ordnung umgesetzt, um den Effekt der rheologischen Materialermüdung nachzubilden. Die lokale Spannungskonzentration an der Spitze der Inklusionen und die in der Marmormatrix initiierten Lokalisierung der Verformung konnten mit diesen Modellen erfolgreich reproduziert werden. Dabei wurde festgestellt, dass die heterogene Verteilung der Verformung und deren Entwicklung mit zunehmender Gesamtverformung (z.B. Form und Umfang der sich ausbildenden Scherzone) abhängig vom Grad der Ermüdung der deformierten Matrix ist. Analog zu der Entwicklung von Ultramylonitbändern in natürlichen Scherzonen mit hoher Verformung, konnte bei der Einführung eines zweites (künstlichen) Ermüdungsschritts bei erhöhter Gesamtverformung, die Ausbildung einer zweiten Schicht mit großer Verformung am Kern der initialen Scherzone beobachtet werden. Mit den gewonnenen Ergebnissen der numerischen Simulationen wurde nicht nur die Ausbildung und transiente Entwicklung, der durch die Materialheterogenität hervorgerufenen Scherzone im Hochtemperaturbereich mit großer Genauigkeit reproduziert. Auch wurde die Wichtigkeit verlässliche Ermüdungsgesetze aufzustellen, die in der Lage sind die durch die Verformung hervorgerufenen Materialermüdung im geologischen Maßstab unter Hinzunahme von numerischen Modellen nachzuahmen, bestätigt. Die durch Materialheterogenitäten hervorgerufene Lokalisierung von Verformungen in der Natur bestehen häufig aus spröden Vorläufern, wie beispielsweise Klüften und Rissen. Die Interaktion von spröden und duktilen Deformationsmechanismen im Allgemeinen und ihr Effekt auf die Lokalisierung von Verformungen sind seit langem Schlüsselthema auf dem Gebiet der Strukturgeologie. Die Kopplung von spröden Bruchprozessen mit der Lokalisierung duktiler Verformungen ist oft Gegenstand der Untersuchung in einer Vielzahl von Feldstudien. Daher wurde experimentell der Einfluss von spröder Deformation auf die Initiierung und Entwicklung von Hochtemperatur Scherzonen in einer starken Matrix mit schwächeren Materialheterogenitäten untersucht. Dafür wurden Carrara Marmor-Solnhofen Kalksteininklusions-Systeme unter triaxialen Bedingungen bei konstanter axialer Verformungsrate und hoher Temperatur (T = 900 ◦C) in einer PatersonApparatur deformiert. Dabei wurden die Inklusionen in einer übereinander liegenden, aber nicht überlappenden Geometrie so angeordnet, dass sich bei axialer Probendeformation entweder Kompression oder Dehnung in der Fläche zwischen den Inklusionen einstellt. Die Versuche wurden bei verschiedenen Manteldrücken (P = 30, 50, 100 und 300 MPa) durchgeführt, um unterschiedliche Beträge an spröder Deformation in der Marmormatrix hervorzurufen. Bei geringen Manteldrücken (P = 30 und 50 MPa) kann ein hoher Anteil an spröder Deformation in allen Probenkonfigurationen beobachtet werden. Allerdings ist die räumliche Verteilung der Risse abhängig von der Kinematik der sich übereinanderliegenden Inklusionen. Bei der Dehnungskonfiguration sind die Risse entlang der Scherfläche zwischen den Inklusionen konzentriert, während sie bei der Kompressionskonfiguration außer halb der Inklusionen weit verteilt sind. Dementsprechend neigen duktile, durch spröde unterstützte Prozesse Deformationen entlang der Inklusionsebene bei Dehnung zu lokalisieren oder sich über weite Fläche der Matrix bei Kompression zu verteilen. Bei Manteldrücken von 100 und 300 MPa ist die Risserzeugung in beiden Konfigurationen weitestgehend unterdrückt und die Verformung wird fast ausschließlich durch viskoses Kriechen akkommodiert. Mit ansteigendem Manteldruck führt das bei Proben der Dehnungskonfiguration zu fortschreitender De-Lokalisierung. Die Ergebnisse zeigen, dass die Lokalisierung von duktilen Verformungen effizienter ist, wenn diese durch spröde Bruchprozesse assistiert werden. Allerdings sind diese spröden Prozesse nur dann effektiv, wenn sie heterogen verteilt sind, was letztendlich eine Funktion der lokalen Spannungsstörungen ist. KW - localized deformation KW - shear zones KW - Carrara marble KW - high temperature rock deformation KW - brittle precursors KW - Carrara-marmor KW - Spröde Vorläufer KW - Hochtemperatur Gesteinsdeformtion KW - Lokalisierte Deformation KW - Scherzonen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446165 ER - TY - THES A1 - Schuck, Bernhard T1 - Geomechanical and petrological characterisation of exposed slip zones, Alpine Fault, New Zealand T1 - Geomechanische und petrologische Charakterisierung aufgeschlossener Gleithorizonte, Alpine Fault, Neuseeland N2 - The Alpine Fault is a large, plate-bounding, strike-slip fault extending along the north-western edge of the Southern Alps, South Island, New Zealand. It regularly accommodates large (MW > 8) earthquakes and has a high statistical probability of failure in the near future, i.e., is late in its seismic cycle. This pending earthquake and associated co-seismic landslides are expected to cause severe infrastructural damage that would affect thousands of people, so it presents a substantial geohazard. The interdisciplinary study presented here aims to characterise the fault zone’s 4D (space and time) architecture, because this provides information about its rheological properties that will enable better assessment of the hazard the fault poses. The studies undertaken include field investigations of principal slip zone fault gouges exposed along strike of the fault, and subsequent laboratory analyses of these outcrop and additional borehole samples. These observations have provided new information on (I) characteristic microstructures down to the nanoscale that indicate which deformation mechanisms operated within the rocks, (II) mineralogical information that constrains the fault’s geomechanical behaviour and (III) geochemical compositional information that allows the influence of fluid- related alteration processes on material properties to be unraveled. Results show that along-strike variations of fault rock properties such as microstructures and mineralogical composition are minor and / or do not substantially influence fault zone architecture. They furthermore provide evidence that the architecture of the fault zone, particularly its fault core, is more complex than previously considered, and also more complex than expected for this sort of mature fault cutting quartzofeldspathic rocks. In particular our results strongly suggest that the fault has more than one principal slip zone, and that these form an anastomosing network extending into the basement below the cover of Quaternary sediments. The observations detailed in this thesis highlight that two major processes, (I) cataclasis and (II) authigenic mineral formation, are the major controls on the rheology of the Alpine Fault. The velocity-weakening behaviour of its fault gouge is favoured by abundant nanoparticles promoting powder lubrication and grain rolling rather than frictional sliding. Wall-rock fragmentation is accompanied by co-seismic, fluid-assisted dilatancy that is recorded by calcite cementation. This mineralisation, along with authigenic formation of phyllosilicates, quickly alters the petrophysical fault zone properties after each rupture, restoring fault competency. Dense networks of anastomosing and mutually cross-cutting calcite veins and intensively reworked gouge matrix demonstrate that strain repeatedly localised within the narrow fault gouge. Abundantly undeformed euhedral chlorite crystallites and calcite veins cross-cutting both fault gouge and gravels that overlie basement on the fault’s footwall provide evidence that the processes of authigenic phyllosilicate growth, fluid-assisted dilatancy and associated fault healing are processes active particularly close to the Earth’s surface in this fault zone. Exposed Alpine Fault rocks are subject to intense weathering as direct consequence of abundant orogenic rainfall associated with the fault’s location at the base of the Southern Alps. Furthermore, fault rock rheology is substantially affected by shallow-depth conditions such as the juxtaposition of competent hanging wall fault rocks on poorly consolidated footwall sediments. This means microstructural, mineralogical and geochemical properties of the exposed fault rocks may differ substantially from those at deeper levels, and thus are not characteristic of the majority of the fault rocks’ history. Examples are (I) frictionally weak smectites found within the fault gouges being artefacts formed at temperature conditions, and imparting petrophysical properties that are not typical for most of fault rocks of the Alpine Fault, (II) grain-scale dissolution resulting from subaerial weathering rather than deformation by pressure-solution processes and (III) fault gouge geometries being more complex than expected for deeper counterparts. The methodological approaches deployed in analyses of this, and other fault zones, and the major results of this study are finally discussed in order to contextualize slip zone investigations of fault zones and landslides. Like faults, landslides are major geohazards, which highlights the importance of characterising their geomechanical properties. Similarities between faults, especially those exposed to subaerial processes, and landslides, include mineralogical composition and geomechanical behaviour. Together, this ensures failure occurs predominantly by cataclastic processes, although aseismic creep promoted by weak phyllosilicates is not uncommon. Consequently, the multidisciplinary approach commonly used to investigate fault zones may contribute to increase the understanding of landslide faulting processes and the assessment of their hazard potential. N2 - Die Alpine Fault ist eine große Plattengrenze mit lateralem Versatz, die sich entlang des nordwestlichen Fußes der Südalpen, Südinsel Neuseeland, erstreckt. Regelmäßig ereignen sich große (MW > 8) Erdbeben und gegenwärtig befindet sich die Störung am Ende ihres Erdbebenzyklus, so dass ein baldiges Beben sehr wahrscheinlich ist. Die Alpine Fault stellt eine bedeutende Naturgefahr dar und so wird davon ausgegangen, dass tausende Menschen von dem anstehenden Erdbeben, ko-seismischen Hangrutschungen und den damit einhergehenden großen Schäden an der Infrastruktur betroffen sein werden. Daher zielt die hier vorgestellte interdisziplinäre Studie darauf ab, den Aufbau der Störungszone in 4D (räumlich und zeitlich) zu charakterisieren, weil dies Aufschluss über ihre rheologischen Eigenschaften liefert und damit einen Beitrag zur Einschätzung der von der Störung ausgehenden Gefahr leisten wird. Die durchgeführten Arbeiten umfassen Felduntersuchungen der entlang der Störung aufge- schlossenen Hauptscherzone und sich daran anschließende Laboruntersuchungen dieser Auf- schluss- und zusätzlicher Bohrlochproben. Diese geben Aufschluss über (I) charakteristis- che Mikrostrukturen bis in den Nanometerbereich, was erlaubt Deformationsmechanismen abzuleiten, (II) die Mineralogie und ihren Einfluss auf das geomechanische Verhalten und (III) die geochemische Zusammensetzung, die es ermöglicht, den Einfluss fluid-bezogener Alterationsprozesse auf Materialeigenschaften besser zu verstehen. Die Ergebnisse zeigen, dass Variationen der Eigenschaften der Störungsgesteine, wie Mikrostrukturen und mineralogische Zusammensetzung, entlang der Störung nur untergeord- net auftreten und den Aufbau der Störungszone nicht oder nur unwesentlich beeinflussen. Darüber hinaus zeigen sie, dass der Aufbau der Störungszone, vor allem ihres Kerns, komplexer ist als bisher angenommen. Dies ist unerwartet für eine Störung in quartz- und feldspatreichem Gestein dieses Alters. Diese Sicht wird von Ergebnissen gestützt, die nahelegen, dass die Störung mehr als eine Hauptscherzone hat und dass diese ein anastomisierendes Netzwerk bilden, das sich bis in das Festgestein unterhalb der Deckschicht aus quartären Sedimenten erstreckt. Die Beobachtungen dieser Arbeit zeigen, dass zwei Prozesse, (I) Kataklase und (II) au- thigenes Mineralwachstum, den größten Einfluss auf die Rheologie der Alpine Fault haben. Das “velocity-weakening”-Verhalten der Hauptscherzonen und ihres Gesteinsmehls wird durch die große Anzahl von Nanopartikeln begünstigt, die das Rollen der Partikel zu Ungunsten von Gleitreibungsrutschen fördern. Die Zerstückelung des Umgebungsgesteins geht mit ko- seismischer, fluid-unterstützter Dilatanz einher, die die anschließende Zementierung durch Kalzit begünstigt. Diese, in Kombination mit authigenen Schichtsilikaten, stellt die petro- physikalischen Eigenschaften der Störungszone nach jedem Erdbeben schnell wieder her. Dichte Netzwerke anastomisierender und sich gegenseitig durchschlagender Kalzitadern und umfassend aufgearbeitetes Gesteinsmehl belegen, dass Verformung wiederholt in den dünnen Hauptscherbahnen lokalisiert wurde. Kalzitadern durschlagen sowohl das Gesteinsmehl der Hauptscherbahnen als auch das Geröll, das die oberflächennahe Sedimentabdeckung des Festgesteins im Liegenden darstellt. Dies und allgegenwärtige, undeformierte, euhedrale Chlorit-Kristalle belegen, dass authigenes Schichtsilikatwachstum, fluid-unterstütze Dilatanz und das damit einhergehende Heilen der Störung Prozesse sind, die auch nahe der Erdoberfläche wirken. Freigelegte Gesteine der Alpine Fault sind intensiver Verwitterung als direkter Folge des reichlich vorhandenen Steigungsregens, der sich aus der Lage der Störung am Fuß der Südalpen ergibt, ausgesetzt. Darüber hinaus wird die Rheologie der Störungsgesteine erheblich durch oberflächennahen Randbedingungen wie die Gegenüberstellung kompetenter Störungsgesteine des Hangenden mit wenig-konsolidierten Sedimenten des Liegenden beeinflusst. Dies hat zur Folge, dass sich mikrostrukturelle, mineralogische und geochemische Eigenschaften der freigelegten Störungsgesteine erheblich von denen in größeren Tiefen unterscheiden können und folglich nicht charakteristisch für den Großteil der Deformationsgeschichte sind. Beispiele hierfür sind (I) Smektitphasen in den Hauptscherzonen, die einen niedrigen Reibungskoeffizien- ten aufweisen, allerdings Artefakte von für die Mehrheit der Gesteine dieser Störung atypischer Temperaturen und petrophysikalischer Eigenschaften sind, (II) angelöste Minerale als Ergebnis oberflächennaher Verwitterung und nicht von Drucklösung und (III) ein interner Aufbau des Gesteinsmehls der Hauptscherbahnen, der komplexerer ist, als dies für das Äquivalent in größerer Tiefe zu erwarten wäre. Schließlich werden die Ergebnisse dieser Arbeit gemeinsam mit den Hauptbefunden und methodischen Ansätzen anderer Studien zu Störungszonen diskutiert und in Kontext zu Analysen von Scherzonen in Störungen und Hangrutschungen gestellt. Hangrutschungen sind, wie Störungen, bedeutende Naturgefahren, was die Notwendigkeit, ihre geomechanischen Eigenschaften zu charakterisieren, herausstreicht. Störungen, vor allem jene, die Ober- flächenprozessen ausgesetzt sind, und Hangrutschungen teilen viele Gemeinsamkeiten wie mineralogische Zusammensetzung und geomechanisches Verhalten, was vor allem zu Versagen mittels kataklastischer Mechanismen führt; allerdings ist aseismisches Kriechen, befördert durch Schichtsilikate mit niedrigem Reibungskoeffizienten, nicht ungewöhnlich. Folglich könnte der multidisziplinäre Ansatz, der in der Regel zur Untersuchung von Störungszonen herangezogen wird, dazu beitragen das Verständnis von Hangrutschungen zu verbessern und ihr Gefährdungspotential abzuschätzen. KW - Alpine Fault KW - fluid rock interaction KW - microstructures KW - fault healing KW - authigenic mineral formation KW - brittle deformation KW - fault zone architecture KW - strain localization KW - landslides KW - faults KW - mineral composition KW - deformation mechanisms KW - Alpine Fault KW - Fluid-Gesteins-Wechselwirkung KW - Mikrostrukturen KW - Fault Healing KW - authigene Mineralbildung KW - spröde Deformation KW - Störungszonenarchitektur KW - Lokalisierung von Verformung KW - Erdrutsche KW - Verwerfungen KW - Mineralzusammensetzung KW - Deformationsmechanismen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446129 ER - TY - THES A1 - Zorn, Edgar Ulrich T1 - Monitoring lava dome growth and deformation with photogrammetric methods and modelling N2 - Lava domes are severely hazardous, mound-shaped extrusions of highly viscous lava and commonly erupt at many active stratovolcanoes around the world. Due to gradual growth and flank oversteepening, such lava domes regularly experience partial or full collapses, resulting in destructive and far-reaching pyroclastic density currents. They are also associated with cyclic explosive activity as the complex interplay of cooling, degassing, and solidification of dome lavas regularly causes gas pressurizations on the dome or the underlying volcano conduit. Lava dome extrusions can last from days to decades, further highlighting the need for accurate and reliable monitoring data. This thesis aims to improve our understanding of lava dome processes and to contribute to the monitoring and prediction of hazards posed by these domes. The recent rise and sophistication of photogrammetric techniques allows for the extraction of observational data in unprecedented detail and creates ideal tools for accomplishing this purpose. Here, I study natural lava dome extrusions as well as laboratory-based analogue models of lava dome extrusions and employ photogrammetric monitoring by Structure-from-Motion (SfM) and Particle-Image-Velocimetry (PIV) techniques. I primarily use aerial photography data obtained by helicopter, airplanes, Unoccupied Aircraft Systems (UAS) or ground-based timelapse cameras. Firstly, by combining a long time-series of overflight data at Volcán de Colima, México, with seismic and satellite radar data, I construct a detailed timeline of lava dome and crater evolution. Using numerical model, the impact of the extrusion on dome morphology and loading stress is further evaluated and an impact on the growth direction is identified, bearing important implications for the location of collapse hazards. Secondly, sequential overflight surveys at the Santiaguito lava dome, Guatemala, reveal surface motion data in high detail. I quantify the growth of the lava dome and the movement of a lava flow, showing complex motions that occur on different timescales and I provide insight into rock properties relevant for hazard assessment inferred purely by photogrammetric processing of remote sensing data. Lastly, I recreate artificial lava dome and spine growth using analogue modelling under controlled conditions, providing new insights into lava extrusion processes and structures as well as the conditions in which they form. These findings demonstrate the capabilities of photogrammetric data analyses to successfully monitor lava dome growth and evolution while highlighting the advantages of complementary modelling methods to explain the observed phenomena. The results presented herein further bear important new insights and implications for the hazards posed by lava domes. N2 - Lavadome sind kuppelförmige Aufstauungen aus zähflüssiger Lava und bilden sich häufig bei Eruptionen an aktiven Stratovulkanen. Sie stellen dabei oft eine erhebliche Gefahr für Menschen und Infrastruktur dar, weil Lavadome instabil werden können und bei einem Kollaps pyroklastische Ströme (auch Glutlawinen) erzeugen können. Diese können innerhalb von Minuten weite Flächen verwüsten, daher ist die Überwachung von Lavadomen und deren Wachstum mit genauen und zuverlässigen Daten von großer Bedeutung. In dieser Arbeit werden das Wachstum und die Bewegungen von Lavadomen mit fotogrammetrischen Methoden (Vermessungen anhand von Fotos) und mit Modellierungen in drei Teilstudien getestet und untersucht. Dazu wurden Daten sowohl an Lavadomen von Vulkanen in Mexiko und Guatemala als auch mittels künstlich erzeugter Dome im Labor erhoben. Hierbei wurden insbesondere das Structure-from-Motion-Verfahren, bei dem mithilfe einer Serie von Luftaufnahmen ein hochauflösendes 3D-Modell des Lavadoms und des Vulkans erstellt wird, und das Particle-Image-Velocimetry-Verfahren, bei dem aus einer Zeitreihe von Fotos kleinste Bewegungen detailliert gemessen werden können, verwendet. In der ersten Teilstudie wird aus einer Kombination von Überflugsbildern, Radardaten eines Satelliten, und seismischen Daten eine detaillierte Zeitreihe des Lavadom-Wachstums und der Kraterentwickelung am Volcán de Colima, Méxiko, erstellt. Anschließend werden die dabei erfassten Richtungen des Domwachstums mit numerischen Modellen auf Basis der fotogrammetrischen 3D-Modelle simuliert, welche zeigen, dass sich lokale Änderungen der Topografie auf die Wachstumsrichtung auswirken können. In der zweiten Teilstudie werden Drohnen in verschiedenen Zeitintervallen über einen Lavadom am Santa Maria Vulkan, Guatemala, geflogen. Die Überflugsdaten zeigen dabei Bewegungen sowohl an einem Lavastrom als auch ein Anschwellen des Doms mit jeweils unterschiedlichen Geschwindigkeiten. Ferner können die Daten genutzt werden um Oberflächentemperatur und die Viskosität (Zähflüssigkeit) der Lava zu vermessen, welche für die Gefahrenanalyse eine wichtige Rolle spielen. In der dritten Teilstudie werden künstliche Dom-Modelle mithilfe von Sand-Gips-Gemischen erzeugt. Diese können sowohl den Aufbau und Morphologie als auch die internen Strukturen von Lavadomen simulieren und anhand von Zeitraffer-Aufnahmen im Detail nachstellen. Die Ergebnisse zeigen, dass Fotogrammetrie und Modellierungen geeignete Mittel sind um Lavadome sowie deren Entstehungsprozesse und Gefahren zu verfolgen und neue Erkenntnisse zu gewinnen. T2 - Überwachung von Wachstum und Deformation an Lavadomen mit fotogrammetrischen Methoden und Modellierungen KW - Lava dome KW - Lavadom KW - Photogrammetry KW - Fotogrammetrie KW - Volcano KW - Vulkan KW - Analogue Model KW - Analogmodell Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483600 ER - TY - THES A1 - Biedermann, Nicole T1 - Carbonate-silicate reactions at conditions of the Earth’s mantle and the role of carbonates as possible trace-element carriers N2 - Carbonates play a key role in the chemistry and dynamics of our planet. They are directly connected to the CO2 budget of our atmosphere and have a great impact on the deep carbon cycle. Moreover, recent studies have shown that carbonates are stable along the geothermal gradient down to Earth's lower mantle conditions, changing their crystal structure and related properties. Subducted carbonates may also react with silicates to form new phases. These reactions will redistribute elements, such as calcium (Ca), magnesium (Mg), iron (Fe) and carbon in the form of carbon dioxide (CO2), but also trace elements, that are carried by the carbonates. The trace elements of most interest are strontium (Sr) and rare earth elements (REE) which have been found to be important constituents in the composition of the primitive lower mantle and in mineral inclusions found in super-deep diamonds. However, the stability of carbonates in presence of mantle silicates at relevant temperatures is far from being well understood. Related to this, very little is known about distribution processes of trace elements between carbonates and mantle silicates. To shed light on these processes, we studied reactions between Sr- and REE-containing CaCO3 and Mg/Fe-bearing silicates of the system (Mg,Fe)2SiO4 - (Mg,Fe)SiO3 at high pressure and high temperature using synchrotron radiation based μ-X-ray diffraction (μ-XRD) and μ-X-ray fluorescence (μ-XRF) with μm-resolution in a laser-heated diamond anvil cell. X-ray diffraction is used to derive the structural changes of the phase reactions whereas X-ray fluorescence gives information on the chemical changes in the sample. In-situ experiments at high pressure and high temperature were performed at beamline P02.2 at PETRA III (Hamburg, Germany) and at beamline ID27 at ESRF (Grenoble, France). In addition to μ-XRD and μ-XRF, ex-situ measurements were made on the recovered sample material using transmission electron microscopy (TEM) and provided further insights into the reaction kinetics of carbonate-silicate reactions. Our investigations show that CaCO3 is unstable in presence of mantle silicates above 1700 K and a reaction takes place in which magnesite plus CaSiO3-perovskite are formed. In addition, we observed that a high content of iron in the carbonate-silicate system favours dolomite formation during the reaction. The subduction of natural carbonates with significant amounts of Sr leads to a comprehensive investigation of the stability not only of CaCO3 phases in contact with mantle silicates but also of SrCO3 (and of Sr-bearing CaCO3). We found that SrCO3 reacts with (Mg,Fe)SiO3-perovskite to form magnesite and gained evidence for the formation of SrSiO3-perovskite. To complement our study on the stability of SrCO3 at conditions of the Earth's lower mantle, we performed powder X-ray diffraction and single crystal X-ray diffraction experiments at ambient temperature and up to 49 GPa. We observed a transformation from SrCO3-I into a new high-pressure phase SrCO3-II at around 26 GPa with Pmmn crystal structure and a bulk modulus of 103(10) GPa. This information is essential to fully understand the phase behaviour and stability of carbonates in the Earth's lower mantle and to elucidate the possibility of introducing Sr into mantle silicates by carbonate-silicate reactions. Simultaneous recording of μ-XRD and μ-XRF in the μm-range over the heated areas provides spatial information not only about phase reactions but also on the elemental redistribution during the reactions. A comparison of the spatial intensity distribution of the XRF signal before and after heating indicates a change in the elemental distribution of Sr and an increase in Sr-concentration was found around the newly formed SrSiO3-perovskite. With the help of additional TEM analyses on the quenched sample material the elemental redistribution was studied at a sub-micrometer scale. Contrary to expectations from combined μ-XRD and μ-XRF measurements, we found that La and Eu were not incorporated into the silicate phases, instead they tend to form either isolated oxide phases (e.g. Eu2O3, La2O3) or hydroxyl-bastnäsite (La(CO3)(OH)). In addition, we observed the transformation from (Mg,Fe)SiO3-perovskite to low-pressure clinoenstatite during pressure release. The monoclinic structure (P21/c) of this phase allows the incorporation of Ca as shown by additional EDX analyses and, to a minor extent, Sr too. Based on our experiments, we can conclude that a detection of the trace elements in-situ at high pressure and high temperature remains challenging. However, our first findings imply that silicates may incorporate the trace elements provided by the carbonates and indicate that carbonates may have a major effect on the trace element contents of mantle phases. N2 - Karbonate spielen eine wesentliche Rolle in der Chemie und Dynamik unseres Planeten. Sie stehen im direkten Zusammenhang mit dem CO2-Haushalt unserer Atmosphäre und dem tiefen, erdinneren Kohlenstoff-Kreislauf. Darüber hinaus haben jüngste Studien gezeigt, dass subduzierte Karbonate entlang des geothermischen Gradienten bis hinunter zu unteren Erdmantelbedingungen stabil sind, wobei sich ihre Kristallstruktur und die damit verbundenen Eigenschaften ändern. Ebenso können subduzierte Karbonate mit Mantelsilikaten reagieren. Diese Reaktionen führen zu einer Umverteilung von Elementen, welche von den subduzierten Karbonaten hinunter in die Tiefen der Erde transportiert werden. Die Elemente, um die es sich hauptsächlich handelt, sind dabei Calcium (Ca), Magnesium (Mg), Eisen (Fe) und Kohlenstoff (C). Aber auch Spurenelemente, wie beispielsweise Strontium (Sr) und Seltene Erdelemente (REE), können über Karbonate in den unteren Erdmantelbereich gelangen. Die Stabilität der Karbonate in Gegenwart von Mantelsilikaten bei relevanten Erdmantelbedingungen ist jedoch bei Weitem nicht bekannt. Ebenso ist nur sehr wenig über die Verteilungsprozesse von Spurenelementen zwischen Karbonaten und Mantelsilikaten bekannt. Um diese Prozesse zu beleuchten, wurden Reaktionen zwischen Sr- und REE-haltigem CaCO3 und Mg/Fe-haltigen Silikaten aus dem System (Mg,Fe)2SiO4 - (Mg,Fe)SiO3 unter hohem Druck und hoher Temperatur mit μm-aufgelöster Röntgenbeugung (μ-XRD) und Röntgenfluoreszenz (μ-XRF) in einer lasergeheizten Diamantstempelzelle durchgeführt. Dabei wird Röntgenbeugung verwendet, um die strukturellen Änderungen der Phasenreaktionen abzuleiten, während Röntgenfluoreszenz Informationen über die chemischen Änderungen in der Probe liefert. Unsere Untersuchungen zeigen, dass sowohl SrCO3 als auch CaCO3 in Gegenwart von Mantelsilikaten bei über 1700 K instabil sind und eine Reaktion stattfindet, bei der Magnesit und CaSiO3-Perowskit bzw. SrSiO3-Perowskit gebildet werden. Ein Vergleich der räumlichen Intensitätsverteilungen von XRF Signalen vor und nach dem Heizen zeigt eine Änderung in der Elementverteilung von Sr und eine Zunahme der Sr-Konzentration um den neugebildeten SrSiO3-Perowskit. Zusätzliche Aufnahmen am zurückgewonnenen, abgeschreckten Probenmaterial mittels Transmissionselektronenmikroskopie (TEM) lieferten weitere Erkenntnisse zur Reaktionskinetik. Entgegen den Erwartungen eines Einbaus der Seltenen Erdelemente in die neugebildeten Mantelsilikate, haben wir aus kombinierten μ-XRD-, μ-XRF- und TEM-Messungen festgestellt, dass La und Eu entweder isolierte Oxidphasen (Eu2O3, La2O3) oder Hydroxyl-Bastnäsit (La(CO3)(OH)) bilden. Zusätzlich war zu beobachten, dass (Mg,Fe)SiO3-Perowskit sich während der Druckentlastung in Clinoenstatit umgewandelt hat. Die monokline Struktur dieser Phase ermöglicht den Einbau von Ca und, im geringerem Maße, Sr, wie durch zusätzliche EDX-Analysen gezeigt wurde. Ergänzend zu unserer Studie führten wir Pulver-Röntgenbeugung in Kombination mit Einkristall-Röntgenbeugung bei Umgebungstemperatur und bis zu 49 GPa am Endglied Strontianit (SrCO3) durch. Wir beobachteten eine Umwandlung von SrCO3-I in eine neue Hochdruckphase SrCO3-II bei etwa 26 GPa mit Pmmn-Kristallstruktur und einem Kompressionsmodul von 103(10) GPa. Solche Informationen sind sehr wichtig, da sie Aufschlüsse sowohl über das Phasenverhalten als auch über die Stabilität von Karbonaten in Gegenwart von Mantelsilikaten geben und helfen, sie vollständig zu verstehen. Basierend auf den Erkenntnissen aus unseren Experimenten können wir schließen, dass ein Nachweis von Spurenelementen in-situ unter hohem Druck und hoher Temperatur eine Herausforderung bleibt. Unsere Ergebnisse deuten jedoch darauf hin, dass Silikate die Spurenelemente, welche von den Karbonaten transportiert werden, aufnehmen können und demzufolge Karbonate einen wesentlichen Einfluss auf den Spurenelementgehalt von Mantelphasen haben. T2 - Karbonat-Silikat-Reaktionen bei Erdmantelbedingungen und die Rolle der Karbonate als mögliche Spurenelementträger KW - laser-heated Diamond Anvil Cell KW - Carbonate-Silicate reactions KW - Earth's mantle KW - Karbonat-Silikat-Reaktionen KW - Erdmantel KW - laser-geheizte Diamantstempelzelle Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-482772 ER - TY - THES A1 - Pick, Leonie Johanna Lisa T1 - The centennial evolution of geomagnetic activity and its driving mechanisms N2 - This cumulative thesis is concerned with the evolution of geomagnetic activity since the beginning of the 20th century, that is, the time-dependent response of the geomagnetic field to solar forcing. The focus lies on the description of the magnetospheric response field at ground level, which is particularly sensitive to the ring current system, and an interpretation of its variability in terms of the solar wind driving. Thereby, this work contributes to a comprehensive understanding of long-term solar-terrestrial interactions. The common basis of the presented publications is formed by a reanalysis of vector magnetic field measurements from geomagnetic observatories located at low and middle geomagnetic latitudes. In the first two studies, new ring current targeting geomagnetic activity indices are derived, the Annual and Hourly Magnetospheric Currents indices (A/HMC). Compared to existing indices (e.g., the Dst index), they do not only extend the covered period by at least three solar cycles but also constitute a qualitative improvement concerning the absolute index level and the ~11-year solar cycle variability. The analysis of A/HMC shows that (a) the annual geomagnetic activity experiences an interval-dependent trend with an overall linear decline during 1900–2010 of ~5 % (b) the average trend-free activity level amounts to ~28 nT (c) the solar cycle related variability shows amplitudes of ~15–45 nT (d) the activity level for geomagnetically quiet conditions (Kp<2) lies slightly below 20 nT. The plausibility of the last three points is ensured by comparison to independent estimations either based on magnetic field measurements from LEO satellite missions (since the 1990s) or the modeling of geomagnetic activity from solar wind input (since the 1960s). An independent validation of the longterm trend is problematic mainly because the sensitivity of the locally measured geomagnetic activity depends on geomagnetic latitude. Consequently, A/HMC is neither directly comparable to global geomagnetic activity indices (e.g., the aa index) nor to the partly reconstructed open solar magnetic flux, which requires a homogeneous response of the ground-based measurements to the interplanetary magnetic field and the solar wind speed. The last study combines a consistent, HMC-based identification of geomagnetic storms from 1930–2015 with an analysis of the corresponding spatial (magnetic local time-dependent) disturbance patterns. Amongst others, the disturbances at dawn and dusk, particularly their evolution during the storm recovery phases, are shown to be indicative of the solar wind driving structure (Interplanetary Coronal Mass Ejections vs. Stream or Co-rotating Interaction Regions), which enables a backward-prediction of the storm driver classes. The results indicate that ICME-driven geomagnetic storms have decreased since 1930 which is consistent with the concurrent decrease of HMC. Out of the collection of compiled follow-up studies the inclusion of measurements from high-latitude geomagnetic observatories into the third study’s framework seems most promising at this point. N2 - Diese kumulative Arbeit behandelt die Entwicklung der geomagnetischen Aktivität seit Beginn des 20. Jahrhunderts, also die zeitabhängige Antwort des Erdmagnetfeldes auf das Einwirken der Sonne. Der Fokus liegt auf einer Beschreibung des in der Magnetosphäre begründeten, magnetischen Störfeldes auf der Erdoberfläche. Die Variabilität dieses Störfeldes reagiert besonders sensibel auf das Ringstromsystem und wird hinsichtlich des Sonnenantriebs interpretiert. Damit trägt diese Arbeit dazu bei, die langfristige solar-terrestrische Interaktion umfassend zu verstehen. Die gemeinsame Basis der vorgestellen Publikationen ist eine Reanalyse der vektoriellen Magnetfeldmessungen von geomagnetischen Observatorien, die auf niedrigen und mittleren geomagnetischen Breitengraden liegen. In den beiden ersten Studien werden neue, auf den Ringstrom spezialisierte, geomagntische Aktivitätsindizes hergeleitet, die „Annual/Hourly Magnetopsheric Currents“ (A/HMC) Indizes. Verglichen mit existierenden Indizes (z.B. dem Dst Index) verlängern sie nicht nur die abgedeckte Zeitspanne, sondern sie stellen auch eine qualitative Verbesserung bezüglich des absoluten Niveaus und der mit dem ca. 11-jährigen Sonnenzyklus einhergehenden Variabilität dar. Die Auswertung des A/HMC zeigt, dass (a) die jährliche geomagnetiche Aktivität einem intervallabhängigen Trend unterliegt mit einer linearen Abnahme von ca. 5 % im Zeitraum 1900-2010 (b) das durchschnittliche, Trend-befreite Aktivitätsniveau bei ca. 28 Nanotesla (nT) liegt (c) die mit dem Sonnenzyklus zusammenhängende Variabilität eine Amplitude zwischen 15 und 45 nT aufweist (d) das Aktivitätsniveau für geomagnetisch ruhige Konditionen (Kp < 2 nT) bei knapp unter 20 nT liegt. Die Plausibilität der letztgenannten drei Punkte lässt sich über einen Vergleich mit unabhängigen Abschätzungen sicherstellen. Entweder zieht man hierzu Magnetfeldmessungen von „Low-Earth-Orbit“ Satellitenmissionen (seit den 1990er-Jahren), oder eine Modellierung der geomagnetischen Aktivität mittels der Parameter des Sonnenwindes (seit den 1960er-Jahren) heran. Eine unabhängige Validierung des langfristigen Trends ist jedoch problematisch, hauptsächlich, weil die Sensitivität der lokalen geomagnetischen Aktivität vom Breitengrad abhängt. Folglich ist A/HMC weder mit globalen, geomagnetischen Aktivitätindizes (z.B. mit dem aa Index), noch mit dem teils rekonstruierten, „offenen“ solaren Magnetfluss direkt vergleichbar. Die dritte Studie kombiniert eine konsistente, HMC-basierte Identifikation geomagnetischer Stürme aus dem Zeitraum 1930-2015 mit einer Analyse der entsprechenden räumlichen Störungsmuster. Die Studie zeigt, dass insbesondere die Entwicklung der Magnetfeldstörungen zu Sonnenauf- und Sonnenuntergang während der Erholungsphase der Stürme statistisch unterschiedlich auf die Art des Sonnenwindantriebs (Koronale Massenauswürfe (KM) oder korotierende Wechselwirkungsregionen) reagieren. Dies ermöglicht eine Bestimmung der Antriebsklassen von historischen geomagnetischen Stürmen. Die Ergebnisse zeigen, dass KM-getriebene Stürme seit 1930 abgenommen haben, was mit der einhergehenden Verringerung von HMC zusammenpasst. Aus der Sammlung möglicher Folgestudien erscheint es zum jetzigen Zeitpunkt am vielversprechendsten, Observatoriumsmessungen aus hohen Breiten im Rahmen der dritten Studie einzubeziehen. T2 - Die hundertjährige Entwicklung der geomagnetischen Aktivität und ihre Antriebsmechanismen KW - Geomagnetic activity KW - Geomagnetic index KW - Geomagnetic observatory KW - Space climate KW - Space weather KW - Geomagnetische Aktivität KW - Geomagnetischer Index KW - Geomagnetisches Observatorium KW - Weltraumklima KW - Weltraumwetter Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472754 ER - TY - THES A1 - Liu, Sibiao T1 - Controls of foreland-deformation patterns in the orogen-foreland shortening system N2 - The Andean Plateau (Altiplano-Puna Plateau) of the southern Central Andes is the second-highest orogenic plateau on our planet after Tibet. The Andean Plateau and its foreland exhibit a pronounced segmentation from north to south regarding the style and magnitude of deformation. In the Altiplano (northern segment), more than 300 km of tectonic shortening has been recorded, which started during the Eocene. A well-developed thin-skinned thrust wedge located at the eastern flank of the plateau (Subandes) indicates a simple-shear shortening mode. In contrast, the Puna (southern segment) records approximately half of the shortening of the Altiplano - and the shortening started later. The tectonic style in the Puna foreland switches to a thick-skinned mode, which is related to pure-shear shortening. In this study, carried out in the framework of the StRATEGy project, high-resolution 2D thermomechanical models were developed to systematically investigate controls of deformation patterns in the orogen-foreland pair. The 2D and 3D models were subsequently applied to study the evolution of foreland deformation and surface topography in the Altiplano-Puna Plateau. The models demonstrate that three principal factors control the foreland-deformation patterns: (i) strength differences in the upper lithosphere between the orogen and its foreland, rather than a strength difference in the entire lithosphere; (ii) gravitational potential energy of the orogen (GPE) controlled by crustal and lithospheric thicknesses, and (iii) the strength and thickness of foreland-basin sediments. The high-resolution 2D models are constrained by observations and successfully reproduce deformation structures and surface topography of different segments of the Altiplano-Puna plateau and its foreland. The developed 3D models confirm these results and suggest that a relatively high shortening rate in the Altiplano foreland (Subandean foreland fold-and-thrust belt) is due to simple-shear shortening facilitated by thick and mechanically weak sediments, a process which requires a much lower driving force than the pure-shear shortening deformation mode in the adjacent broken foreland of the Puna, where these thick sedimentary basin fills are absent. Lower shortening rate in the Puna foreland is likely accommodated in the forearc by the slab retreat. N2 - Das Andenplateau (Altiplano-Puna-Plateau) in den südlichen Zentralanden ist nach Tibet das zweithöchste orogene Plateau auf unserem Planeten. Dieses Plateau und sein Vorland weisen eine ausgeprägte Segmentierung von Nord nach Süd hinsichtlich Art und Ausmaß der Verformung auf. Im Altiplano (nördliches Segment) wird seit der im Eozän stattfindenden Deformation mehr als 300 km tektonische Verkürzung dokumentiert. Ein gut entwickelter sedimentärer Schubkeil bzw. Vorland-Überschiebungsgürtel (Subandin) an der Ostflanke des Plateaus (thin-skinned foreland deformation) deutet in dieser Region des Vorlandes auf Prozesse einfacher Scherung hin (simple-shear modus). Im Gegensatz dazu weist die Puna (südliches Plateausegment) ungefähr die Hälfte der Verkürzung des Altiplano auf - und die Verkürzung begann später. Außerdem geht der tektonische Stil im Puna-Vorland zu einem zerbrochenen Vorland mit Kristallinblöcken (thick-skinned foreland) über, der mit der Verkürzung durch reine Scherung (pure-shear modus) erklärt werden kann. In dieser Studie, die im Rahmen des StRATEGy-Projekts durchgeführt wurde, wurden hochauflösende thermomechanische 2D-Modelle entwickelt, um systematisch die Kontrolle von Verformungsmustern im Orogen-Vorland-Paar zu untersuchen. Die 2D- und 3D-Modelle wurden anschließend angewendet, um die Entwicklung der Vorlanddeformation und der Oberflächentopographie im Altiplano-Puna-Plateau zu verstehen. Die Modelle zeigen, dass drei Hauptfaktoren die Deformationsmuster des Vorlandes steuern: (i) Festigkeitsunterschiede in der oberen Lithosphäre zwischen dem Orogen und seinem Vorland - und nicht Festigkeitsunterschiede in der gesamten Lithosphäre; (ii) die gravitationsbezogene potentielle Energie des Orogens (GPE), die durch die Krusten- und Lithosphärenmächtigkeit gesteuert wird und (iii) die Festigkeit sowie Mächtigkeiten der Vorlandbeckensedimente. Die hochauflösenden 2D-Modelle sind auf tatsächliche Daten aus Beobachtungen beschränkt und reproduzieren erfolgreich Deformationsstrukturen sowie die topographischen Verhältnisse der verschiedenen Segmente des Altiplano-Puna-Plateaus und seines Vorlandes. Die entwickelten 3D-Modelle bestätigen diese Ergebnisse und legen nahe, dass die relativ hohe Verkürzungsrate im Altiplano-Vorland (Subandin) bei den vorhandenen mächtigen Sedimentabfolgen geringer mechanischer Festigkeit weniger Kraftaufwand erfordert als die Deformation des Puna-Vorlandes, wo diese Sedimente weitgehend fehlen. Die geringeren Verkürzungsbeträge im Puna-Vorland werden wahrscheinlich durch das Zurückweichen der Subduktionszone im Forearc-Bereich ausgeglichen. KW - geodynamics KW - numerical modeling KW - Central Andes KW - foreland deformation KW - geophysics KW - Geodynamik KW - numerische Modellierung KW - Zentralanden KW - Vorlanddeformation KW - Geophysik Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445730 ER -