TY - JOUR A1 - Miedema, Piter S. A1 - Thielemann-Kühn, Nele A1 - Calafell, Irati Alonso A1 - Schüßler-Langeheine, Christian A1 - Beye, Martin T1 - Strain analysis from M-edge resonant inelastic X-ray scattering of nickel oxide films JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Electronic structure modifications due to strain are an effective method for tailoring nano-scale functional materials. Demonstrated on nickel oxide (NiO) thin films, Resonant Inelastic X-ray Scattering (RIXS) at the transition-metal M-2,M-3-edge is shown to be a powerful tool for measuring the electronic structure modification due to strain in the near-surface region. Analyses from the M-2,M-3-edge RIXS in comparison with dedicated crystal field multiplet calculations show distortions in 40 nm NiO grown on a magnesium oxide (MgO) substrate (NiO/MgO) similar to those caused by surface relaxation of bulk NiO. The films of 20 and 10 nm NiO/MgO show slightly larger differences from bulk NiO. Quantitatively, the NiO/MgO samples all are distorted from perfect octahedral (O-h) symmetry with a tetragonal parameter Ds of about -0.1 eV, very close to the Ds distortion from octahedral (O-h) symmetry parameter of -0.11 eV obtained for the surface-near region from a bulk NiO crystal. Comparing the spectra of a 20 nm film of NiO grown on a 20 nm magnetite (Fe3O4) film on a MgO substrate (NiO/Fe3O4/MgO) with the calculated multiplet analyses, the distortion parameter Ds appears to be closer to zero, showing that the surface-near region of this templated film is less distorted from O-h symmetry than the surface-near region in bulk NiO. Finally, the potential of M-2,M-3-edge RIXS for other investigations of strain on electronic structure is discussed. Y1 - 2019 U6 - https://doi.org/10.1039/c9cp03593a SN - 1463-9076 SN - 1463-9084 VL - 21 IS - 38 SP - 21596 EP - 21602 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Xiong, Tao A1 - Saalfrank, Peter T1 - Vibrationally Broadened Optical Spectra of Selected Radicals and Cations Derived from Adamantane: A Time-Dependent Correlation Function Approach JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Diamondoids are hydrogen-saturated molecular motifs cut out of diamond, forming a class of materials with tunable optoelectronic properties. In this work, we extend previous work on neutral, closed-shell diamondoids by computing with hybrid density functional theory and time-dependent correlation functions vibrationally broadened absorption spectra of cations and radicals derived from the simplest diamondoid, adamantane, namely, the neutral 1- and 2-adamantyl radicals (C10H15), the 1- and 2-adamantyl cations (C10H15+), and the adamantane radical cation (C10H16+). For selected cases, we also report vibrationally broadened emission, photoelectron, and resonance Raman spectra. Furthermore, the effect of the damping factor on the vibrational fine-structure is studied. The following trends are found: (1) Low-energy absorptions of the adamantyl radicals and cations, and of the adamantane cation, are all strongly red-shifted with respect to adamantane; (2) also, emission spectra are strongly red-shifted, whereas photoelectron spectra are less affected for the cases studied; (3) vibrational fine-structures are reduced compared to those of adamantane; (4) the spectroscopic signals of 1- and 2-adamantyl species are significantly different from each other; and (5) reducing the damping factor has only a limited effect on the vibrational fine-structure in most cases. This suggests that removing hydrogen atoms and/or electrons from adamantane leads to new optoelectronic properties, which should be detectable by vibronic spectroscopy. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpca.9b03305 SN - 1089-5639 SN - 1520-5215 VL - 123 IS - 41 SP - 8871 EP - 8880 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Sass, Stephan A1 - Stöcklein, Walter F. M. A1 - Klevesath, Anja A1 - Hurpin, Jeanne A1 - Menger, Marcus A1 - Hille, Carsten T1 - Binding affinity data of DNA aptamers for therapeutic anthracyclines from microscale thermophoresis and surface plasmon resonance spectroscopy JF - The analyst : the analytical journal of the Royal Society of Chemistry N2 - Anthracyclines like daunorubicin (DRN) and doxorubicin (DOX) play an undisputed key role in cancer treatment, but their chronic administration can cause severe side effects. For precise anthracycline analytical systems, aptamers are preferable recognition elements. Here, we describe the detailed characterisation of a single-stranded DNA aptamer DRN-10 and its truncated versions for DOX and DRN detection. Binding affinities were determined from surface plasmon resonance (SPR) and microscale thermophoresis (MST) and combined with conformational data from circular dichroism (CD). Both aptamers displayed similar nanomolar binding affinities to DRN and DOX, even though their rate constants differed as shown by SPR recordings. SPR kinetic data unravelled a two-state reaction model including a 1 : 1 binding and a subsequent conformational change of the binding complex. This model was supported by CD spectra. In addition, the dissociation constants determined with MST were always lower than that from SPR, and especially for the truncated aptamer they differed by two orders of magnitude. This most probably reflects the methodological difference, namely labelling for MST vs. immobilisation for SPR. From CD recordings, we suggested a specific G-quadruplex as structural basis for anthracycline binding. We concluded that the aptamer DRN-10 is a promising recognition element for anthracycline detection systems and further selected aptamers can be also characterised with the combined methodological approach presented here. Y1 - 2019 U6 - https://doi.org/10.1039/c9an01247h SN - 0003-2654 SN - 1364-5528 VL - 144 IS - 20 SP - 6064 EP - 6073 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kopyshev, Alexey A1 - Kanevche, Katerina A1 - Lomadze, Nino A1 - Pfitzner, Emanuel A1 - Loebner, Sarah A1 - Patil, Rohan R. A1 - Genzer, Jan A1 - Heberle, Joachim A1 - Santer, Svetlana T1 - Light-Induced Structuring of Photosensitive Polymer Brushes JF - ACS Applied polymer materials N2 - We investigate light-induced irreversible structuring of surface topographies in poly(3-sulfopropyl methacrylate/potassium salt) (PSPMK) brushes on flat solid substrates prepared by surface-initiated atom transfer radical polymerization. The brushes have been loaded with azobenzene-based surfactant comprised of positively charged headgroups and hydrophobic tail. The surfactant exhibits photoresponsive properties through photoisomerization from the trans to cis states leading to significant changes in physicochemical properties of grafted polymer chains. The azobenzene surfactant enables photoresponsive behavior without introducing irreversible changes to chemical composition of the parent polymer brush. Exposing these photosensitive brushes to irradiation with UV interference beams causes the polymer brush to form surface relief grating (SRG) patterns. The cationic surfactant penetrates only similar to 25% of the upper portion of the PSPMK brush, resulting in the formation of two sections within the brush: a photoresponsive upper layer and nonfunctional buried layer, which is not affected by the UV irradiation. Using nano-FTIR spectroscopy, we characterize locally the chemical composition of the polymer brush and confirm partial penetration of the surfactant within the film. Strong optomechanical stresses take place only within the upper layer of the brush that is impregnated with the surfactants and causes surface topography alternation due to a local rupture of grafted polymer chains. The cleaved polymer chains are then removed from the surface by using a good solvent, leaving behind topographical grating on top of the nonfunctional brush layer. We demonstrate that photostructured polymer brush can be used for reversible switching of brush topography by varying external humidity. KW - photosensitive polymer brushes KW - reversible and irreversible structuring of polymer brushes KW - photosensitive azobenzene containing surfactant KW - strong polyelectrolyte brush KW - SRG formation in polymer brushes Y1 - 2019 U6 - https://doi.org/10.1021/acsapm.9b00705 SN - 2637-6105 VL - 1 IS - 11 SP - 301 EP - 3026 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Qin, Qing A1 - Heil, T. A1 - Schmidt, J. A1 - Schmallegger, Max A1 - Gescheidt, Georg A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - Electrochemical Fixation of Nitrogen and Its Coupling with Biomass Valorization with a Strongly Adsorbing and Defect Optimized Boron-Carbon-Nitrogen Catalyst JF - ACS Applied Energy Materials N2 - The electrochemical conversion of low-cost precursors into high-value chemicals using renewably generated electricity is a promising approach to build up an environmentally friendly energy cycle, including a storage element. The large-scale implementation of such process can, however, only be realized by the design of cost-effective electrocatalysts with high efficiency and highest stability. Here, we report the synthesis of N and B codoped porous carbons. The constructed B-N motives combine abundant unpaired electrons and frustrated Lewis pairs (FLPs). They result in desirable performance for electrochemical N-2 reduction reaction (NRR) and electrooxidation of 5-hydroxymethylfurfural (HMF) in the absence of any metal cocatalyst. A maximum Faradaic efficiency of 15.2% with a stable NH3 production rate of 21.3 mu g h(-1) mg(-1) is obtained in NRR. Besides, 2,5-furandicarboxylic acid (FDCA) is first obtained by using non-metalbased electrocatalysts at a conversion of 71% and with yield of 57%. Gas adsorption experiments elucidate the relationship between the structure and the ability of the catalysts to activate the substrate molecules. This work opens up deep insights for the rational design of non-metal-based catalysts for potential electrocatalytic applications and the possible enhancement of their activity by the introduction of FLPs and point defects at grain boundaries. KW - non-metal catalysis KW - porous carbon KW - heteroatoms KW - N-2 reduction KW - HMF oxidation Y1 - 2019 U6 - https://doi.org/10.1021/acsaem.9b01852 SN - 2574-0962 VL - 2 IS - 11 SP - 8359 EP - 8365 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yang, Guang A1 - Zheng, Wei A1 - Tao, Guoqing A1 - Wu, Libin A1 - Zhou, Qi-Feng A1 - Kochovski, Zdravko A1 - Ji, Tan A1 - Chen, Huaijun A1 - Li, Xiaopeng A1 - Lu, Yan A1 - Ding, Hong-ming A1 - Yang, Hai-Bo A1 - Chen, Guosong A1 - Jiang, Ming T1 - Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides JF - ACS nano N2 - During the past decade, self-assembly of saccharide-containing amphiphilic molecules toward bioinspired functional glycomaterials has attracted continuous attention due to their various applications in fundamental and practical areas. However, it still remains a great challenge to prepare hierarchical glycoassemblies with controllable and diversiform structures because of the complexity of saccharide structures and carbohydrate-carbohydrate interactions. Herein, through hierarchical self-assembly of modulated amphiphilic supramolecular metallocarbohydrates, we successfully prepared various well-defined glyco-nanostructures in aqueous solution, including vesicles, solid spheres, and opened vesicles depending on the molecular structures of metallocarbohydrates. More attractively, these glyco-nanostructures can further transform into other morphological structures in aqueous solutions such as worm-like micelles, tubules, and even tupanvirus-like vesicles (TVVs). It is worth mentioning that distinctive anisotropic structures including the opened vesicles (OVs) and TVVs were rarely reported in glycobased nano-objects. This intriguing diversity was mainly controlled by the subtle structural trade-off of the two major components of the amphiphiles, i.e., the saccharides and metallacycles. To further understand this precise structural control, molecular simulations provided deep physical insights on the morphology evolution and balancing of the contributions from saccharides and metallacycles. Moreover, the multivalency of glyco-nanostructures with different shapes and sizes was demonstrated by agglutination with a diversity of sugarbinding protein receptors such as the plant lectins Concanavalin A (ConA). This modular synthesis strategy provides access to systematic tuning of molecular structure and self-assembled architecture, which undoubtedly will broaden our horizons on the controllable fabrication of biomimetic glycomaterials such as biological membranes and supramolecular lectin inhibitors. KW - glycomaterials KW - diversiform structures KW - hierarchical self-assembly KW - metallocarbohydrates KW - anisotropic structures Y1 - 2019 U6 - https://doi.org/10.1021/acsnano.9b07134 SN - 1936-0851 SN - 1936-086X VL - 13 IS - 11 SP - 13474 EP - 13485 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Suslova, Elena N. A1 - Tran Dinh Phien, A1 - Shlykov, Sergey A. A1 - Heydenreich, Matthias A1 - Kleinpeter, Erich T1 - 1-Methylthio-1-phenyl-1-silacyclohexane: Synthesis, conformational preferences in gas and solution by GED, NMR and theoretical calculations JF - Tetrahedron N2 - 1-Methylthio-1-phenyl-1-silacyclohexane 1, the first silacyclohexane with the sulfur atom at silicon, was synthesized and its molecular structure and conformational preferences studied by gas-phase electron diffraction (GED) and low temperature C-13 and Si-29 NMR spectroscopy (LT NMR). Quantum-chemical calculations were carried out both for the isolated species and solvate complexes in gas and in polar medium. The predominance of the 1-MeSaxPheq conformer in gas phase (1-Ph-eq :1-Ph-ax = 55:45, Delta G degrees = 0.13 kcal/mol) determined from GED is consistent with that measured in the freon solution by LT NMR (1-Ph-eq:1-Ph-ax = 65:35, Delta G degrees = 0.12 kcal/mol), the experimentally measured ratios being close to that estimated by quantum chemical calculations at both the DFT and MP2 levels of theory. (C) 2019 Elsevier Ltd. All rights reserved. KW - 1-Methylthio-1-phenyl-1-silacyclohexane KW - Conformational analysis KW - Gas phase electron diffraction KW - Low-temperature C-13 and Si-29 NMR KW - DFT and MP2 calculations Y1 - 2019 U6 - https://doi.org/10.1016/j.tet.2019.130677 SN - 0040-4020 VL - 75 IS - 46 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Otte, Fabian A1 - Schmidt, Bernd T1 - Matsuda-Heck Arylation of Glycals for the Stereoselective Synthesis of Aryl C-Glycosides JF - The journal of organic chemistry N2 - The methoxymethyl-protected glycal L-amicetal, synthesized de novo from L-ethyl lactate through tandem ring-closing metathesis-isomerization sequence, undergoes a highly trans-diastereoselective Heck-type coupling reaction with various arene diazonium salts to furnish 2,3-unsaturated aryl C-glycosides in moderate to excellent yields. The products can be further functionalized, e.g., by hydrogenation, epoxidation, or dihydroxylation to furnish 2,3,6-tridesoxy, 2,3-anhydro-6-desoxy, or 6-desoxy aryl C-glycosides, respectively. The method was applied to the synthesis of an a-configured 6-desoxy-gliflozin derivative. Y1 - 2019 U6 - https://doi.org/10.1021/acs.joc.9b02410 SN - 0022-3263 SN - 1520-6904 VL - 84 IS - 22 SP - 14816 EP - 14829 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Aloni, Sapir Shekef A1 - Perovic, Milena A1 - Weitman, Michal A1 - Cohen, Reut A1 - Oschatz, Martin A1 - Mastai, Yitzhak T1 - Amino acid-based ionic liquids as precursors for the synthesis of chiral nanoporous carbons JF - Nanoscale Advances N2 - The synthesis of chiral nanoporous carbons based on chiral ionic liquids (CILs) of amino acids as precursors is described. Such unique precursors for the carbonization of CILs yield chiral carbonaceous materials with high surface area (approximate to 620 m(2) g(-1)). The enantioselectivities of the porous carbons are examined by advanced techniques such as selective adsorption of enantiomers using cyclic voltammetry, isothermal titration calorimetry, and mass spectrometry. These techniques demonstrate the chiral nature and high enantioselectivity of the chiral carbon materials. Overall, we believe that the novel approach presented here can contribute significantly to the development of new chiral carbon materials that will find important applications in chiral chemistry, such as in chiral catalysis and separation and in chiral sensors. From a scientific point of view, the approach and results reported here can significantly deepen our understanding of chirality at the nanoscale and of the structure and nature of chiral nonporous materials and surfaces. Y1 - 2019 U6 - https://doi.org/10.1039/c9na00520j SN - 2516-0230 VL - 1 IS - 12 SP - 4981 EP - 4988 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zehbe, Kerstin A1 - Lange, Alyna A1 - Taubert, Andreas T1 - Stereolithography Provides Access to 3D Printed lonogels with High Ionic Conductivity JF - Energy Fuels N2 - New ionogels (IGs) were prepared by combination of a series of sulfonate-based ionic liquids (ILs), 1-methyl-3-(4-sulfobutyl)imidazolium para-toluenesulfonate [BmimSO(3)][pTS], 1-methyl-1-butylpiperidiniumsulfonate para-toluenesul-fonate [BmpipSO(3)] [pTS], and 1-methyl-3-(4-sulfobutyl) imidazolium methylsulfonate [BmimSO(3)H][MeSO3] with a commercial stereolithography photoreactive resin. The article describes both the fundamental properties of the ILs and the resulting IGs. The IGs obtained from the ILs and the resin show high ionic conductivity of up to ca. 0.7.10(-4) S/cm at room temperature and 3.4-10(-3) S/cm at 90 degrees C. Moreover, the IGs are thermally stable to about 200 degrees C and mechanically robust. Finally, and most importantly, the article demonstrates that the IGs can be molded three-dimensionally using stereolithography. This provides, for the first time, access to IGs with complex 3D shapes with potential application in battery or fuel cell technology. Y1 - 2019 U6 - https://doi.org/10.1021/acs.energyfuels.9b03379 SN - 0887-0624 SN - 1520-5029 VL - 33 IS - 12 SP - 12885 EP - 12893 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Taubert, Andreas A1 - Leroux, Fabrice A1 - Rabu, Pierre A1 - de Zea Bermudez, Veronica T1 - Advanced hybrid nanomaterials JF - Beilstein journal of nanotechnology KW - colloidal chemistry KW - environmental remediation KW - hybrid nanomaterials KW - nanocomposite KW - nanofillers KW - nanomedicine KW - nanostructures KW - polymer fillers KW - pore templating KW - smart materials Y1 - 2019 U6 - https://doi.org/10.3762/bjnano.10.247 SN - 2190-4286 VL - 10 SP - 2563 EP - 2567 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt am Main ER - TY - JOUR A1 - Günther, Erika A1 - Klauß, André A1 - Toro-Nahuelpan, Mauricio A1 - Schüler, Dirk A1 - Hille, Carsten A1 - Faivre, Damien T1 - The in vivo mechanics of the magnetotactic backbone as revealed by correlative FLIM-FRET and STED microscopy JF - Scientific reports N2 - Protein interaction and protein imaging strongly benefit from the advancements in time-resolved and superresolution fluorescence microscopic techniques. However, the techniques were typically applied separately and ex vivo because of technical challenges and the absence of suitable fluorescent protein pairs. Here, we show correlative in vivo fluorescence lifetime imaging microscopy Forster resonance energy transfer (FLIM-FRET) and stimulated emission depletion (STED) microscopy to unravel protein mechanics and structure in living cells. We use magnetotactic bacteria as a model system where two proteins, MamJ and MamK, are used to assemble magnetic particles called magnetosomes. The filament polymerizes out of MamK and the magnetosomes are connected via the linker MamJ. Our system reveals that bacterial filamentous structures are more fragile than the connection of biomineralized particles to this filament. More importantly, we anticipate the technique to find wide applicability for the study and quantification of biological processes in living cells and at high resolution. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-55804-5 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Scholz, Robert A1 - Lindner, Steven A1 - Loncaric, Ivor A1 - Tremblay, Jean Christophe A1 - Juaristi, J. A1 - Alducin, Maite A1 - Saalfrank, Peter T1 - Vibrational response and motion of carbon monoxide on Cu(100) driven by femtosecond laser pulses: Molecular dynamics with electronic friction JF - Physical review : B, Condensed matter and materials physics N2 - Carbon monoxide on copper surfaces continues to be a fascinating, rich microlab for many questions evolving in surface science. Recently, hot-electron mediated, femtosecond-laser pulse induced dynamics of CO molecules on Cu(100) were the focus of experiments [Inoue et al., Phys. Rev. Lett. 117, 186101 (2016)] and theory [Novko et al., Phys. Rev. Lett. 122, 016806 (2019)], unraveling details of the vibrational nonequilibrium dynamics on ultrashort (subpicoseconds) timescales. In the present work, full-dimensional time-resolved hot-electron driven dynamics are studied by molecular dynamics with electronic friction (MDEF). Dissipation is included by a friction term in a Langevin equation which describes the coupling of molecular degrees of freedom to electron-hole pairs in the copper surface, calculated from gradient-corrected density functional theory (DFT) via a local density friction approximation (LDFA). Relaxation due to surface phonons is included by a generalized Langevin oscillator model. The hot-electron induced excitation is described via a time-dependent electronic temperature, the latter derived from an improved two-temperature model. Our parameter-free simulations on a precomputed potential energy surface allow for excellent statistics, and the observed trends are confirmed by on-the-fly ab initio molecular dynamics with electronic friction (AIMDEF) calculations. By computing time-resolved frequency maps for selected molecular vibrations, instantaneous frequencies, probability distributions, and correlation functions, we gain microscopic insight into hot-electron driven dynamics and we can relate the time evolution of vibrational internal CO stretch-mode frequencies to measured data, notably an observed redshift. Quantitatively, the latter is found to be larger in MDEF than in experiment and possible reasons are discussed for this observation. In our model, in addition we observe the excitation and time evolution of large-amplitude low-frequency modes, lateral CO surface diffusion, and molecular desorption. Effects of surface atom motion and of the laser fluence are also discussed. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevB.100.245431 SN - 2469-9950 SN - 2469-9969 VL - 100 IS - 24 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Burek, Katja A1 - Dengler, Joachim A1 - Emmerling, Franziska A1 - Feldmann, Ines A1 - Kumke, Michael Uwe A1 - Stroh, Julia T1 - Lanthanide Luminescence Revealing the Phase Composition in Hydrating Cementitious Systems JF - ChemistryOpen N2 - The hydration process of Portland cement in a cementitious system is crucial for development of the high‐quality cement‐based construction material. Complementary experiments of X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM) and time‐resolved laser fluorescence spectroscopy (TRLFS) using europium (Eu(III)) as an optical probe are used to analyse the hydration process of two cement systems in the absence and presence of different organic admixtures. We show that different analysed admixtures and the used sulphate carriers in each cement system have a significant influence on the hydration process, namely on the time‐dependence in the formation of different hydrate phases of cement. Moreover, the effect of a particular admixture is related to the type of sulphate carrier used. The quantitative information on the amounts of the crystalline cement paste components is accessible via XRD analysis. Distinctly different morphologies of ettringite and calcium−silicate−hydrates (C−S−H) determined by SEM allow visual conclusions about formation of these phases at particular ageing times. The TRLFS data provides information about the admixture influence on the course of the silicate reaction. The dip in the dependence of the luminescence decay times on the hydration time indicates the change in the structure of C−S−H in the early hydration period. Complementary information from XRD, SEM and TRLFS provides detailed information on distinct periods of the cement hydration process. KW - cement admixtures KW - cement hydration KW - Europium KW - luminescence KW - SEM KW - X-ray diffraction Y1 - 2019 U6 - https://doi.org/10.1002/open.201900249 SN - 2191-1363 VL - 8 IS - 12 SP - 1441 EP - 1452 PB - Wiley-VCH-Verl. CY - Weinheim ER - TY - JOUR A1 - Riebe, Daniel A1 - Erler, Alexander A1 - Brinkmann, Pia A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Gebbers, Robin T1 - Comparison of Calibration Approaches in Laser-Induced Breakdown Spectroscopy for Proximal Soil Sensing in Precision Agriculture JF - Sensors N2 - The lack of soil data, which are relevant, reliable, affordable, immediately available, and sufficiently detailed, is still a significant challenge in precision agriculture. A promising technology for the spatial assessment of the distribution of chemical elements within fields, without sample preparation is laser-induced breakdown spectroscopy (LIBS). Its advantages are contrasted by a strong matrix dependence of the LIBS signal which necessitates careful data evaluation. In this work, different calibration approaches for soil LIBS data are presented. The data were obtained from 139 soil samples collected on two neighboring agricultural fields in a quaternary landscape of northeast Germany with very variable soils. Reference analysis was carried out by inductively coupled plasma optical emission spectroscopy after wet digestion. The major nutrients Ca and Mg and the minor nutrient Fe were investigated. Three calibration strategies were compared. The first method was based on univariate calibration by standard addition using just one soil sample and applying the derived calibration model to the LIBS data of both fields. The second univariate model derived the calibration from the reference analytics of all samples from one field. The prediction is validated by LIBS data of the second field. The third method is a multivariate calibration approach based on partial least squares regression (PLSR). The LIBS spectra of the first field are used for training. Validation was carried out by 20-fold cross-validation using the LIBS data of the first field and independently on the second field data. The second univariate method yielded better calibration and prediction results compared to the first method, since matrix effects were better accounted for. PLSR did not strongly improve the prediction in comparison to the second univariate method. KW - laser-induced breakdown spectroscopy KW - LIBS KW - proximal soil sensing KW - soil nutrients KW - elemental composition Y1 - 2019 U6 - https://doi.org/10.3390/s19235244 SN - 1424-8220 VL - 19 IS - 23 PB - MDPI CY - Basel ER - TY - JOUR A1 - Büchele, Dominique A1 - Chao, Madlen A1 - Ostermann, Markus A1 - Leenen, Matthias A1 - Bald, Ilko T1 - Multivariate chemometrics as a key tool for prediction of K and Fe in a diverse German agricultural soil-set using EDXRF JF - Scientific Reports N2 - Within the framework of precision agriculture, the determination of various soil properties is moving into focus, especially the demand for sensors suitable for in-situ measurements. Energy-dispersive X-ray fluorescence (EDXRF) can be a powerful tool for this purpose. In this study a huge diverse soil set (n = 598) from 12 different study sites in Germany was analysed with EDXRF. First, a principal component analysis (PCA) was performed to identify possible similarities among the sample set. Clustering was observed within the four texture classes clay, loam, silt and sand, as clay samples contain high and sandy soils low iron mass fractions. Furthermore, the potential of uni- and multivariate data evaluation with partial least squares regression (PLSR) was assessed for accurate determination of nutrients in German agricultural samples using two calibration sample sets. Potassium and iron were chosen for testing the performance of both models. Prediction of these nutrients in 598 German soil samples with EDXRF was more accurate using PLSR which is confirmed by a better overall averaged deviation and PLSR should therefore be preferred. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-53426-5 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Liebig, Ferenc A1 - Henning, Ricky A1 - Sarhan, Radwan Mohamed A1 - Prietzel, Claudia Christina A1 - Schmitt, Clemens Nikolaus Zeno A1 - Bargheer, Matias A1 - Koetz, Joachim T1 - A simple one-step procedure to synthesise gold nanostars in concentrated aqueous surfactant solutions JF - RSC Advances N2 - Due to the enhanced electromagnetic field at the tips of metal nanoparticles, the spiked structure of gold nanostars (AuNSs) is promising for surface-enhanced Raman scattering (SERS). Therefore, the challenge is the synthesis of well designed particles with sharp tips. The influence of different surfactants, i.e., dioctyl sodium sulfosuccinate (AOT), sodium dodecyl sulfate (SDS), and benzylhexadecyldimethylammonium chloride (BDAC), as well as the combination of surfactant mixtures on the formation of nanostars in the presence of Ag⁺ ions and ascorbic acid was investigated. By varying the amount of BDAC in mixed micelles the core/spike-shell morphology of the resulting AuNSs can be tuned from small cores to large ones with sharp and large spikes. The concomitant red-shift in the absorption toward the NIR region without losing the SERS enhancement enables their use for biological applications and for time-resolved spectroscopic studies of chemical reactions, which require a permanent supply with a fresh and homogeneous solution. HRTEM micrographs and energy-dispersive X-ray (EDX) experiments allow us to verify the mechanism of nanostar formation according to the silver underpotential deposition on the spike surface in combination with micelle adsorption. KW - optical-properties KW - nanoparticles KW - sers KW - ultrafast KW - size KW - nanotriangles KW - nanoflowers KW - wavelength Y1 - 2019 U6 - https://doi.org/10.1039/C9RA02384D SN - 2046-2069 VL - 9 SP - 23633 EP - 23641 PB - RSC Publishing CY - London ER - TY - JOUR A1 - Kirste, Matthias A1 - Brietzke, Thomas Martin A1 - Holdt, Hans-Jürgen A1 - Schilde, Uwe T1 - The crystal structure of 1,12-diazaperylene, C₁₈H₁₀N₂ JF - Zeitschrift für Kristallographie - New Crystal Structures N2 - C₁₈H₁₀N₂, monoclinic, P2₁/c (no. 14), a=7.9297(9) Å, b=11.4021(14) Å, c=13.3572(15) Å, β=105.363(8)°, V =1164.5(2) ų, Z =4, Rgt(F)=0.0325, wRref(F²)=0.0774, T =210(2) K. Y1 - 2019 U6 - https://doi.org/10.1515/NCRS-2019-0385 SN - 2196-7105 SN - 2194-4946 VL - 234 IS - 6 SP - 1255 EP - 1257 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Raju, Rajarshi Roy A1 - Liebig, Ferenc A1 - Hess, Andreas A1 - Schlaad, Helmut A1 - Koetz, Joachim T1 - Temperature-triggered reversible breakdown of polymer-stabilized olive BT - silicone oil Janus emulsions JF - RSC Advances N2 - A one-step moderate energy vibrational emulsification method was successfully employed to produce thermo-responsive olive/silicone-based Janus emulsions stabilized by poly(N,N-diethylacrylamide) carrying 0.7 mol% oleoyl side chains. Completely engulfed emulsion droplets remained stable at room temperature and could be destabilized on demand upon heating to the transition temperature of the polymeric stabilizer. Time-dependent light micrographs demonstrate the temperature-induced breakdown of the Janus droplets, which opens new aspects of application, for instance in biocatalysis. KW - microgels KW - step Y1 - 2019 U6 - https://doi.org/10.1039/c9ra03463c SN - 2046-2069 VL - 9 IS - 35 SP - 19271 EP - 19277 PB - RSC Publishing CY - London ER - TY - JOUR A1 - Krueger, Tobias A1 - Kelling, Alexandra A1 - Linker, Torsten A1 - Schilde, Uwe T1 - Crystal structures of three cyclohexane‑based γ‑spirolactams BT - determination of configurations and conformations JF - BMC Chemistry N2 - The title compounds, 2-azaspiro[4.5]deca-1-one, C₉H₁₅NO, (1a), cis-8-methyl-2-azaspiro[4.5]deca-1-one, C₁₀H₁₇NO, (1b), and trans-8-methyl-2-azaspiro[4.5]deca-1-one, C₁₀H₁₇NO, (1c), were synthesized from benzoic acids 2 in only 3 steps in high yields. Crystallization from n-hexane afforded single crystals, suitable for X-ray diffraction. Thus, the configurations, conformations, and interesting crystal packing effects have been determined unequivocally. The bicyclic skeleton consists of a lactam ring, attached by a spiro junction to a cyclohexane ring. The lactam ring adopts an envelope conformation and the cyclohexane ring has a chair conformation. The main difference between compound 1b and compound 1c is the position of the carbonyl group on the 2-pyrrolidine ring with respect to the methyl group on the 8-position of the cyclohexane ring, which is cis (1b) or trans (1c). A remarkable feature of all three compounds is the existence of a mirror plane within the molecule. Given that all compounds crystallize in centrosymmetric space groups, the packing always contains interesting enantiomer-like pairs. Finally, the structures are stabilized by intermolecular N–H···O hydrogen bonds. KW - 2-Azaspiro[4.5]deca-1-ones KW - Cis- and trans-form KW - Configuration KW - Conformation KW - Lactams Y1 - 2019 U6 - https://doi.org/10.1186/s13065-019-0586-7 SN - 2661-801X VL - 13 IS - 69 PB - Springer International Publishing CY - Basel ER -