TY - JOUR A1 - Smith, Taylor A1 - Boers, Niklas T1 - Global vegetation resilience linked to water availability and variability JF - Nature Communications N2 - Quantifying the resilience of vegetated ecosystems is key to constraining both present-day and future global impacts of anthropogenic climate change. Here we apply both empirical and theoretical resilience metrics to remotely-sensed vegetation data in order to examine the role of water availability and variability in controlling vegetation resilience at the global scale. We find a concise global relationship where vegetation resilience is greater in regions with higher water availability. We also reveal that resilience is lower in regions with more pronounced inter-annual precipitation variability, but find less concise relationships between vegetation resilience and intra-annual precipitation variability. Our results thus imply that the resilience of vegetation responds differently to water deficits at varying time scales. In view of projected increases in precipitation variability, our findings highlight the risk of ecosystem degradation under ongoing climate change. Vegetation dynamics depend on both the amount of precipitation and its variability over time. Here, the authors show that vegetation resilience is greater where water availability is higher and where precipitation is more stable from year to year. Y1 - 2023 U6 - https://doi.org/10.1038/s41467-023-36207-7 SN - 2041-1723 VL - 14 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Repasch, Marisa A1 - Scheingross, Joel S. A1 - Hovius, Niels A1 - Vieth-Hillebrand, Andrea A1 - Mueller, Carsten W. A1 - Höschen, Carmen A1 - Szupiany, Ricardo N. A1 - Sachse, Dirk T1 - River organic carbon fluxes modulated by hydrodynamic sorting of particulate organic matter JF - Geophysical research letters N2 - Rivers regulate the global carbon cycle by transferring particulate organic carbon (POC) from terrestrial landscapes to marine sedimentary basins, but the processes controlling the amount and composition of fluvially exported POC are poorly understood. We propose that hydrodynamic sorting processes modify POC fluxes during fluvial transit. We test this hypothesis by studying POC transported along a similar to 1,200 km reach of the Rio Bermejo, Argentina. Nanoscale secondary ion mass spectrometry revealed that POC was either fine, mineral-associated organic matter, or coarse discrete organic particles. Mineral-associated POC is more resistant to oxidation and has a lower particle settling velocity than discrete POC. Consequently, hydraulic sorting and downstream fining amplify the proportion of fine, mineral-associated POC from similar to 55% to similar to 78% over 1,220 km of downstream transit. This suggests that mineral-associated POC has a greater probability of export and preservation in marine basins than plant detritus, which may be oxidized to CO2 during transit. KW - compound-specific stable isotopes KW - carbon fluxes KW - rivers KW - NanoSIMS; KW - sediment transport KW - hydrodynamic sorting Y1 - 2022 U6 - https://doi.org/10.1029/2021GL096343 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Voglimacci-Stephanopoli, Joëlle A1 - Wendleder, Anna A1 - Lantuit, Hugues A1 - Langlois, Alexandre A1 - Stettner, Samuel A1 - Schmitt, Andreas A1 - Dedieu, Jean-Pierre A1 - Roth, Achim A1 - Royer, Alain T1 - Potential of X-band polarimetric synthetic aperture radar co-polar phase difference for arctic snow depth estimation JF - Cryosphere N2 - Changes in snowpack associated with climatic warming has drastic impacts on surface energy balance in the cryosphere. Yet, traditional monitoring techniques, such as punctual measurements in the field, do not cover the full snowpack spatial and temporal variability, which hampers efforts to upscale measurements to the global scale. This variability is one of the primary constraints in model development. In terms of spatial resolution, active microwaves (synthetic aperture radar - SAR) can address the issue and outperform methods based on passive microwaves. Thus, high-spatial-resolution monitoring of snow depth (SD) would allow for better parameterization of local processes that drive the spatial variability of snow. The overall objective of this study is to evaluate the potential of the TerraSAR-X (TSX) SAR sensor and the wave co-polar phase difference (CPD) method for characterizing snow cover at high spatial resolution. Consequently, we first (1) investigate SD and depth hoar fraction (DHF) variability between different vegetation classes in the Ice Creek catchment (Qikiqtaruk/Herschel Island, Yukon, Canada) using in situ measurements collected over the course of a field campaign in 2019; (2) evaluate linkages between snow characteristics and CPD distribution over the 2019 dataset; and (3) determine CPD seasonality considering meteorological data over the 2015-2019 period. SD could be extracted using the CPD when certain conditions are met. A high incidence angle (>30 circle) with a high topographic wetness index (TWI) (>7.0) showed correlation between SD and CPD (R2 up to 0.72). Further, future work should address a threshold of sensitivity to TWI and incidence angle to map snow depth in such environments and assess the potential of using interpolation tools to fill in gaps in SD information on drier vegetation types. Y1 - 2022 U6 - https://doi.org/10.5194/tc-16-2163-2022 SN - 1994-0416 SN - 1994-0424 VL - 16 IS - 6 SP - 2163 EP - 2181 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Haugk, Charlotte A1 - Jongejans, Loeka L. A1 - Mangelsdorf, Kai A1 - Fuchs, Matthias A1 - Ogneva, Olga A1 - Palmtag, Juri A1 - Mollenhauer, Gesine A1 - Mann, Paul J. A1 - Overduin, P. Paul A1 - Grosse, Guido A1 - Sanders, Tina A1 - Tuerena, Robyn E. A1 - Schirrmeister, Lutz A1 - Wetterich, Sebastian A1 - Kizyakov, Alexander A1 - Karger, Cornelia A1 - Strauss, Jens T1 - Organic matter characteristics of a rapidly eroding permafrost cliff in NE Siberia (Lena Delta, Laptev Sea region) JF - Biogeosciences N2 - Organic carbon (OC) stored in Arctic permafrost represents one of Earth's largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits is still poorly quantified. We define the OM quality as the intrinsic potential for further transformation, decomposition and mineralisation. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecu- lar geochemical and carbon isotopic analyses of Late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last similar to 52 kyr. We showed that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt %). The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal ka BP) and are overlaid by last glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7-0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of isoand anteiso-branched fatty acids (FAs) relative to mid- and long-chain (C >= 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C/N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease in HPFA values downwards along the profile probably indicates stronger OM decomposition in the oldest (MIS 3) deposits of the cliff. The characterisation of OM from eroding permafrost leads to a better assessment of the greenhouse gas potential of the OC released into river and nearshore waters in the future. Y1 - 2022 U6 - https://doi.org/10.5194/bg-19-2079-2022 SN - 1726-4170 SN - 1726-4189 VL - 19 IS - 7 SP - 2079 EP - 2094 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Jara-Muñoz, Julius A1 - Melnick, Daniel A1 - Li, Shaoyang A1 - Socquet, Anne A1 - Cortés-Aranda, Joaquín A1 - Brill, Dominik A1 - Strecker, Manfred R. T1 - The cryptic seismic potential of the Pichilemu blind fault in Chile revealed by off-fault geomorphology JF - Nature communications N2 - The first step towards assessing hazards in seismically active regions involves mapping capable faults and estimating their recurrence times. While the mapping of active faults is commonly based on distinct geologic and geomorphic features evident at the surface, mapping blind seismogenic faults is complicated by the absence of on-fault diagnostic features. Here we investigated the Pichilemu Fault in coastal Chile, unknown until it generated a Mw 7.0 earthquake in 2010. The lack of evident surface faulting suggests activity along a partly-hidden blind fault. We used off-fault deformed marine terraces to estimate a fault-slip rate of 0.52 +/- 0.04 m/ka, which, when integrated with satellite geodesy suggests a 2.12 +/- 0.2 ka recurrence time for Mw similar to 7.0 normal-faulting earthquakes. We propose that extension in the Pichilemu region is associated with stress changes during megathrust earthquakes and accommodated by sporadic slip during upper-plate earthquakes, which has implications for assessing the seismic potential of cryptic faults along convergent margins and elsewhere. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-30754-1 SN - 2041-1723 VL - 13 IS - 1 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Fuchs, Matthias A1 - Palmtag, Juri A1 - Juhls, Bennet A1 - Overduin, Pier Paul A1 - Grosse, Guido A1 - Abdelwahab, Ahmed A1 - Bedington, Michael A1 - Sanders, Tina A1 - Ogneva, Olga A1 - Fedorova, Irina A1 - Zimov, Nikita S. A1 - Mann, Paul J. A1 - Strauss, Jens T1 - High-resolution bathymetry models for the Lena Delta and Kolyma Gulf coastal zones JF - Earth system science data N2 - Arctic river deltas and deltaic near-shore zones represent important land-ocean transition zones influencing sediment dynamics and nutrient fluxes from permafrost-affected terrestrial ecosystems into the coastal Arctic Ocean. To accurately model fluvial carbon and freshwater export from rapidly changing river catchments as well as assess impacts of future change on the Arctic shelf and coastal ecosystems, we need to understand the sea floor characteristics and topographic variety of the coastal zones. To date, digital bathymetrical data from the poorly accessible, shallow, and large areas of the eastern Siberian Arctic shelves are sparse. We have digitized bathymetrical information for nearly 75 000 locations from large-scale (1 V 25000-1 V 500000) current and historical nautical maps of the Lena Delta and the Kolyma Gulf region in northeastern Siberia. We present the first detailed and seamless digital models of coastal zone bathymetry for both delta and gulf regions in 50 and 200m spatial resolution. We validated the resulting bathymetry layers using a combination of our own water depth measurements and a collection of available depth measurements, which showed a strong correlation (r>0.9). Our bathymetrical models will serve as an input for a high-resolution coupled hydrodynamic-ecosystem model to better quantify fluvial and coastal carbon fluxes to the Arctic Ocean, but they may be useful for a range of other studies related to Arctic delta and near-shore dynamics such as modeling of submarine permafrost, near-shore sea ice, or shelf sediment transport. The new digital high-resolution bathymetry products are available on the PANGAEA data set repository for the Lena Delta (https://doi.org/10.1594/PANGAEA.934045; Fuchs et al., 2021a) and Kolyma Gulf region (https://doi.org/10.1594/PANGAEA.934049; Fuchs et al., 2021b), respectively. Likewise, the depth validation data are available on PANGAEA as well (https://doi.org/10.1594/PANGAEA.933187; Fuchs et al., 2021c). Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-2279-2022 SN - 1866-3508 SN - 1866-3516 VL - 14 IS - 5 SP - 2279 EP - 2301 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Jones, Benjamin M. A1 - Grosse, Guido A1 - Farquharson, Louise M. A1 - Roy-Léveillée, Pascale A1 - Veremeeva, Alexandra A1 - Kanevskiy, Mikhail Z. A1 - Gaglioti, Benjamin A1 - Breen, Amy L. A1 - Parsekian, Andrew D. A1 - Ulrich, Mathias A1 - Hinkel, Kenneth M. T1 - Lake and drained lake basin systems in lowland permafrost regions JF - Nature reviews earth and environment N2 - The formation, growth and drainage of lakes in Arctic and boreal lowland permafrost regions influence landscape and ecosystem processes. These lake and drained lake basin (L-DLB) systems occupy >20% of the circumpolar Northern Hemisphere permafrost region and similar to 50% of the area below 300 m above sea level. Climate change is causing drastic impacts to L-DLB systems, with implications for permafrost dynamics, ecosystem functioning, biogeochemical processes and human livelihoods in lowland permafrost regions. In this Review, we discuss how an increase in the number of lakes as a result of permafrost thaw and an intensifying hydrologic regime are not currently offsetting the land area gained through lake drainage, enhancing the dominance of drained lake basins (DLBs).The contemporary transition from lakes to DLBs decreases hydrologic storage, leads to permafrost aggradation, increases carbon sequestration and diversifies the shifting habitat mosaic in Arctic and boreal regions. However, further warming could inhibit permafrost aggradation in DLBs, disrupting the trajectory of important microtopographic controls on carbon fluxes and ecosystem processes in permafrost-region L-DLB systems. Further research is needed to understand the future dynamics of L-DLB systems to improve Earth system models, permafrost carbon feedback assessments, permafrost hydrology linkages, infrastructure development in permafrost regions and the well-being of northern socio-ecological systems. Y1 - 2022 U6 - https://doi.org/10.1038/s43017-021-00238-9 SN - 2662-138X VL - 3 IS - 1 SP - 85 EP - 98 PB - Springer Nature CY - London ER - TY - JOUR A1 - Sarr, Anta-Clarisse A1 - Donnadieu, Yannick A1 - Bolton, Clara T. A1 - Ladant, Jean-Baptiste A1 - Licht, Alexis A1 - Fluteau, Frédéric A1 - Laugié, Marie A1 - Tardif, Delphine A1 - Dupont-Nivet, Guillaume T1 - Neogene South Asian monsoon rainfall and wind histories diverged due to topographic effects JF - Nature geoscience N2 - The drivers of the evolution of the South Asian Monsoon remain widely debated. An intensification of monsoonal rainfall recorded in terrestrial and marine sediment archives from the earliest Miocene (23-20 million years ago (Ma)) is generally attributed to Himalayan uplift. However, Indian Ocean palaeorecords place the onset of a strong monsoon around 13 Ma, linked to strengthening of the southwesterly winds of the Somali Jet that also force Arabian Sea upwelling. Here we reconcile these divergent records using Earth system model simulations to evaluate the interactions between palaeogeography and ocean-atmosphere dynamics. We show that factors forcing the South Asian Monsoon circulation versus rainfall are decoupled and diachronous. Himalayan and Tibetan Plateau topography predominantly controlled early Miocene rainfall patterns, with limited impact on ocean-atmosphere circulation. The uplift of the East African and Middle Eastern topography played a pivotal role in the establishment of the modern Somali Jet structure above the western Indian Ocean, while strong upwelling initiated as a direct consequence of the emergence of the Arabian Peninsula and the onset of modern-like atmospheric circulation. Our results emphasize that although elevated rainfall seasonality was probably a persistent feature since the India-Asia collision in the Paleogene, modern-like monsoonal atmospheric circulation only emerged in the late Neogene. Y1 - 2022 U6 - https://doi.org/10.1038/s41561-022-00919-0 SN - 1752-0894 SN - 1752-0908 VL - 15 IS - 4 SP - 314 EP - 319 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Flóvenz, Ólafur G. A1 - Wang, Rongjiang A1 - Hersir, Gylfi Páll A1 - Dahm, Torsten A1 - Hainzl, Sebastian A1 - Vassileva, Magdalena A1 - Drouin, Vincent A1 - Heimann, Sebastian A1 - Isken, Marius Paul A1 - Gudnason, Egill Á. A1 - Ágústsson, Kristján A1 - Ágústsdóttir, Thorbjörg A1 - Horálek, Josef A1 - Motagh, Mahdi A1 - Walter, Thomas R. A1 - Rivalta, Eleonora A1 - Jousset, Philippe A1 - Krawczyk, Charlotte M. A1 - Milkereit, Claus T1 - Cyclical geothermal unrest as a precursor to Iceland's 2021 Fagradalsfjall eruption JF - Nature geoscience N2 - Understanding and constraining the source of geodetic deformation in volcanic areas is an important component of hazard assessment. Here, we analyse deformation and seismicity for one year before the March 2021 Fagradalsfjall eruption in Iceland. We generate a high-resolution catalogue of 39,500 earthquakes using optical cable recordings and develop a poroelastic model to describe three pre-eruptional uplift and subsidence cycles at the Svartsengi geothermal field, 8 km west of the eruption site. We find the observed deformation is best explained by cyclic intrusions into a permeable aquifer by a fluid injected at 4 km depth below the geothermal field, with a total volume of 0.11 ± 0.05 km3 and a density of 850 ± 350 kg m–3. We therefore suggest that ingression of magmatic CO2 can explain the geodetic, gravity and seismic data, although some contribution of magma cannot be excluded. Y1 - 2022 U6 - https://doi.org/10.1038/s41561-022-00930-5 SN - 1752-0894 SN - 1752-0908 VL - 15 IS - 5 SP - 397 EP - 404 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Kaya, Mustafa Yücel A1 - Dupont-Nivet, Guillaume A1 - Frieling, Joost A1 - Fioroni, Chiara A1 - Rohrmann, Alexander A1 - Altıner, Sevinç Özkan A1 - Vardar, Ezgi A1 - Tanyas, Hakan A1 - Mamtimin, Mehmut A1 - Zhaojie, Guo T1 - The Eurasian epicontinental sea was an important carbon sink during the Palaeocene-Eocene thermal maximum JF - Communications earth and environment N2 - The Palaeocene-Eocene Thermal Maximum (ca. 56 million years ago) offers a primary analogue for future global warming and carbon cycle recovery. Yet, where and how massive carbon emissions were mitigated during this climate warming event remains largely unknown. Here we show that organic carbon burial in the vast epicontinental seaways that extended over Eurasia provided a major carbon sink during the Palaeocene-Eocene Thermal Maximum. We coupled new and existing stratigraphic analyses to a detailed paleogeographic framework and using spatiotemporal interpolation calculated ca. 720–1300 Gt organic carbon excess burial, focused in the eastern parts of the Eurasian epicontinental seaways. A much larger amount (2160–3900 Gt C, and when accounting for the increase in inundated shelf area 7400–10300 Gt C) could have been sequestered in similar environments globally. With the disappearance of most epicontinental seas since the Oligocene-Miocene, an effective negative carbon cycle feedback also disappeared making the modern carbon cycle critically dependent on the slower silicate weathering feedback. Y1 - 2022 U6 - https://doi.org/10.1038/s43247-022-00451-4 SN - 2662-4435 VL - 3 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Klose, Tim A1 - Guillemoteau, Julien A1 - Vignoli, Giulio A1 - Walter, Judith A1 - Herrmann, Andreas A1 - Tronicke, Jens T1 - Structurally constrained inversion by means of a Minimum Gradient Support regularizer BT - examples of FD-EMI data inversion constrained by GPR reflection data JF - Geophysical journal international N2 - Many geophysical inverse problems are known to be ill-posed and, thus, requiring some kind of regularization in order to provide a unique and stable solution. A possible approach to overcome the inversion ill-posedness consists in constraining the position of the model interfaces. For a grid-based parameterization, such a structurally constrained inversion can be implemented by adopting the usual smooth regularization scheme in which the local weight of the regularization is reduced where an interface is expected. By doing so, sharp contrasts are promoted at interface locations while standard smoothness constraints keep affecting the other regions of the model. In this work, we present a structurally constrained approach and test it on the inversion of frequency-domain electromagnetic induction (FD-EMI) data using a regularization approach based on the Minimum Gradient Support stabilizer, which is capable to promote sharp transitions everywhere in the model, i.e., also in areas where no structural a prioriinformation is available. Using 1D and 2D synthetic data examples, we compare the proposed approach to a structurally constrained smooth inversion as well as to more standard (i.e., not structurally constrained) smooth and sharp inversions. Our results demonstrate that the proposed approach helps in finding a better and more reliable reconstruction of the subsurface electrical conductivity distribution, including its structural characteristics. Furthermore, we demonstrate that it allows to promote sharp parameter variations in areas where no structural information are available. Lastly, we apply our structurally constrained scheme to FD-EMI field data collected at a field site in Eastern Germany to image the thickness of peat deposits along two selected profiles. In this field example, we use collocated constant offset ground-penetrating radar (GPR) data to derive structural a priori information to constrain the inversion of the FD-EMI data. The results of this case study demonstrate the effectiveness and flexibility of the proposed approach. KW - Controlled source electromagnetics (CSEM) KW - Inverse theory KW - Electrical properties KW - Ground penetrating radar KW - Frequency Domain Electromagnetics KW - Inversion Y1 - 2023 U6 - https://doi.org/10.1093/gji/ggad041 SN - 0956-540X SN - 1365-246X VL - 233 IS - 3 SP - 1938 EP - 1949 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Cesca, Simone A1 - Sugan, Monica A1 - Rudzinski, Lukasz A1 - Vajedian, Sanaz A1 - Niemz, Peter A1 - Plank, Simon A1 - Petersen, Gesa A1 - Deng, Zhiguo A1 - Rivalta, Eleonora A1 - Vuan, Alessandro A1 - Linares, Milton Percy Plasencia A1 - Heimann, Sebastian A1 - Dahm, Torsten T1 - Massive earthquake swarm driven by magmatic intrusion at the Bransfield Strait, Antarctica JF - Communications earth and environment N2 - An earthquake swarm affected the Bransfield Strait, Antarctica, a unique rift basin in transition from intra-arc rifting to ocean spreading. The swarm, counting similar to 85,000 volcano-tectonic earthquakes since August 2020, is located close to the Orca submarine volcano, previously considered inactive. Simultaneously, geodetic data reported up to similar to 11 cm north-westward displacement over King George Island. We use a broad variety of geophysical data and methods to reveal the complex migration of seismicity, accompanying the intrusion of 0.26-0.56 km(3) of magma. Strike-slip earthquakes mark the intrusion at depth, while shallower normal faulting the similar to 20 km long lateral growth of a dike. Seismicity abruptly decreased after a Mw 6.0 earthquake, suggesting the magmatic dike lost pressure with the slipping of a large fault. A seafloor eruption is likely, but not confirmed by sea surface temperature anomalies. The unrest documents episodic magmatic intrusion in the Bransfield Strait, providing unique insights into active continental rifting. Y1 - 2022 U6 - https://doi.org/10.1038/s43247-022-00418-5 SN - 2662-4435 VL - 3 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Irrgang, Anna M. A1 - Bendixen, Mette A1 - Farquharson, Louise M. A1 - Baranskaya, Alisa A1 - Erikson, Li H. A1 - Gibbs, Ann E. A1 - Ogorodov, Stanislav A. A1 - Overduin, Pier Paul A1 - Lantuit, Hugues A1 - Grigoriev, Mikhail N. A1 - Jones, Benjamin M. T1 - Drivers, dynamics and impacts of changing Arctic coasts JF - Nature reviews earth and environment N2 - Arctic coasts are vulnerable to the effects of climate change, including rising sea levels and the loss of permafrost, sea ice and glaciers. Assessing the influence of anthropogenic warming on Arctic coastal dynamics, however, is challenged by the limited availability of observational, oceanographic and environmental data. Yet, with the majority of permafrost coasts being erosive, coupled with projected intensification of erosion and flooding, understanding these changes is critical. In this Review, we describe the morphological diversity of Arctic coasts, discuss important drivers of coastal change, explain the specific sensitivity of Arctic coasts to climate change and provide an overview of pan-Arctic shoreline change and its multifaceted impacts. Arctic coastal changes impact the human environment by threatening coastal settlements, infrastructure, cultural sites and archaeological remains. Changing sediment fluxes also impact the natural environment through carbon, nutrient and pollutant release on a magnitude that remains difficult to predict. Increasing transdisciplinary and interdisciplinary collaboration efforts will build the foundation for identifying sustainable solutions and adaptation strategies to reduce future risks for those living on, working at and visiting the rapidly changing Arctic coast. Y1 - 2022 U6 - https://doi.org/10.1038/s43017-021-00232-1 SN - 2662-138X VL - 3 IS - 1 SP - 39 EP - 54 PB - Nature Research CY - London ER - TY - JOUR A1 - Bereswill, Sarah A1 - Gatz-Miller, Hannah A1 - Su, Danyang A1 - Tötzke, Christian A1 - Kardjilov, Nikolay A1 - Oswald, Sascha A1 - Mayer, Klaus Ulrich T1 - Coupling non-invasive imaging and reactive transport modeling to investigate water and oxygen dynamics in the root zone JF - Vadose zone journal N2 - Oxygen (O-2) availability in soils is vital for plant growth and productivity. The transport and consumption of O-2 in the root zone is closely linked to soil moisture content, the spatial distribution of roots, as well as structure and heterogeneity of the surrounding soil. In this study, we measure three-dimensional root system architecture and the spatiotemporal dynamics of soil moisture (& theta;) and O-2 concentrations in the root zone of maize (Zea mays) via non-invasive imaging, and then construct and parameterize a reactive transport model based on the experimental data. The combination of three non-invasive imaging methods allowed for a direct comparison of simulation results with observations at high spatial and temporal resolution. In three different modeling scenarios, we investigated how the results obtained for different levels of conceptual complexity in the model were able to match measured & theta; and O-2 concentration patterns. We found that the modeling scenario that considers heterogeneous soil structure and spatial variability of hydraulic parameters (permeability, porosity, and van Genuchten & alpha; and n), better reproduced the measured & theta; and O-2 patterns relative to a simple model with a homogenous soil domain. The results from our combined imaging and modeling analysis reveal that experimental O-2 and water dynamics can be reproduced quantitatively in a reactive transport model, and that O-2 and water dynamics are best characterized when conditions unique to the specific system beyond the distribution of roots, such as soil structure and its effect on water saturation and macroscopic gas transport pathways, are considered. Y1 - 2023 U6 - https://doi.org/10.1002/vzj2.20268 SN - 1539-1663 VL - 22 IS - 5 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Sharma, Shubham A1 - Hainzl, Sebastian A1 - Zöller, Gert T1 - Seismicity parameters dependence on main shock-induced co-seismic stress JF - Geophysical journal international N2 - The Gutenberg-Richter (GR) and the Omori-Utsu (OU) law describe the earthquakes' energy release and temporal clustering and are thus of great importance for seismic hazard assessment. Motivated by experimental results, which indicate stress-dependent parameters, we consider a combined global data set of 127 main shock-aftershock sequences and perform a systematic study of the relationship between main shock-induced stress changes and associated seismicity patterns. For this purpose, we calculate space-dependent Coulomb Stress (& UDelta;CFS) and alternative receiver-independent stress metrics in the surrounding of the main shocks. Our results indicate a clear positive correlation between the GR b-value and the induced stress, contrasting expectations from laboratory experiments and suggesting a crucial role of structural heterogeneity and strength variations. Furthermore, we demonstrate that the aftershock productivity increases nonlinearly with stress, while the OU parameters c and p systematically decrease for increasing stress changes. Our partly unexpected findings can have an important impact on future estimations of the aftershock hazard. KW - Earthquake hazards KW - Earthquake interaction KW - forecasting KW - and prediction KW - Statistical seismology KW - b-value Y1 - 2023 U6 - https://doi.org/10.1093/gji/ggad201 SN - 0956-540X SN - 1365-246X VL - 235 IS - 1 SP - 509 EP - 517 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Stoltnow, Malte A1 - Weis, Philipp A1 - Korges, Maximilian T1 - Hydrological controls on base metal precipitation and zoning at the porphyry-epithermal transition constrained by numerical modeling JF - Scientific reports N2 - Ore precipitation in porphyry copper systems is generally characterized by metal zoning (Cu-Mo to Zn-Pb-Ag), which is suggested to be variably related to solubility decreases during fluid cooling, fluid-rock interactions, partitioning during fluid phase separation and mixing with external fluids. Here, we present new advances of a numerical process model by considering published constraints on the temperature- and salinity-dependent solubility of Cu, Pb and Zn in the ore fluid. We quantitatively investigate the roles of vapor-brine separation, halite saturation, initial metal contents, fluid mixing and remobilization as first-order controls of the physical hydrology on ore formation. The results show that the magmatic vapor and brine phases ascend with different residence times but as miscible fluid mixtures, with salinity increases generating metal-undersaturated bulk fluids. The release rates of magmatic fluids affect the location of the thermohaline fronts, leading to contrasting mechanisms for ore precipitation: higher rates result in halite saturation without significant metal zoning, lower rates produce zoned ore shells due to mixing with meteoric water. Varying metal contents can affect the order of the final metal precipitation sequence. Redissolution of precipitated metals results in zoned ore shell patterns in more peripheral locations and also decouples halite saturation from ore precipitation. Y1 - 2023 U6 - https://doi.org/10.1038/s41598-023-30572-5 SN - 2045-2322 VL - 13 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Schmidt, Lena Katharina A1 - Francke, Till A1 - Grosse, Peter Martin A1 - Mayer, Christoph A1 - Bronstert, Axel T1 - Reconstructing five decades of sediment export from two glacierized high-alpine catchments in Tyrol, Austria, using nonparametric regression JF - Hydrology and earth system sciences : HESS N2 - Knowledge on the response of sediment export to recent climate change in glacierized areas in the European Alps is limited, primarily because long-term records of suspended sediment concentrations (SSCs) are scarce. Here we tested the estimation of sediment export of the past five decades using quantile regression forest (QRF), a nonparametric, multivariate regression based on random forest. The regression builds on short-term records of SSCs and long records of the most important hydroclimatic drivers (discharge, precipitation and air temperature - QPT). We trained independent models for two nested and partially glacier-covered catchments, Vent (98 km(2)) and Vernagt (11.4 km(2)), in the upper otztal in Tyrol, Austria (1891 to 3772 m a.s.l.), where available QPT records start in 1967 and 1975. To assess temporal extrapolation ability, we used two 2-year SSC datasets at gauge Vernagt, which are almost 20 years apart, for a validation. For Vent, we performed a five-fold cross-validation on the 15 years of SSC measurements. Further, we quantified the number of days where predictors exceeded the range represented in the training dataset, as the inability to extrapolate beyond this range is a known limitation of QRF. Finally, we compared QRF performance to sediment rating curves (SRCs). We analyzed the modeled sediment export time series, the predictors and glacier mass balance data for trends (Mann-Kendall test and Sen's slope estimator) and step-like changes (using the widely applied Pettitt test and a complementary Bayesian approach).Our validation at gauge Vernagt demonstrated that QRF performs well in estimating past daily sediment export (Nash-Sutcliffe efficiency (NSE) of 0.73) and satisfactorily for SSCs (NSE of 0.51), despite the small training dataset. The temporal extrapolation ability of QRF was superior to SRCs, especially in periods with high-SSC events, which demonstrated the ability of QRF to model threshold effects. Days with high SSCs tended to be underestimated, but the effect on annual yields was small. Days with predictor exceedances were rare, indicating a good representativity of the training dataset. Finally, the QRF reconstruction models outperformed SRCs by about 20 percent points of the explained variance.Significant positive trends in the reconstructed annual suspended sediment yields were found at both gauges, with distinct step-like increases around 1981. This was linked to increased glacier melt, which became apparent through step-like increases in discharge at both gauges as well as change points in mass balances of the two largest glaciers in the Vent catchment. We identified exceptionally high July temperatures in 1982 and 1983 as a likely cause. In contrast, we did not find coinciding change points in precipitation. Opposing trends at the two gauges after 1981 suggest different timings of "peak sediment". We conclude that, given large-enough training datasets, the presented QRF approach is a promising tool with the ability to deepen our understanding of the response of high-alpine areas to decadal climate change. Y1 - 2023 U6 - https://doi.org/10.5194/hess-27-1841-2023 SN - 1027-5606 SN - 1607-7938 VL - 27 IS - 9 SP - 1841 EP - 1863 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Cabieces, Roberto A1 - Olivar‐Castaño, Andrés A1 - Junqueira, Thiago C. A1 - Relinque, Jesús A1 - Fernandez-Prieto, Luis M. A1 - Vackár, Jiří A1 - Rösler, Boris A1 - Barco, Jaime A1 - Pazos, Antonio A1 - García‐Martínez, Luz T1 - Integrated Seismic Program (ISP): A new Python GUI-based software for earthquake seismology and seismic signal processing JF - Seismological research letters N2 - Integrated Seismic Program (ISP) is a graphical user interface designed to facilitate and provide a user-friendly framework for performing diverse common and advanced tasks in seismological research. ISP is composed of five main modules for earthquake location, time-frequency analysis and advanced signal processing, implementation of array techniques to estimate the slowness vector, seismic moment tensor inversion, and receiver function computation and analysis. In addition, several support tools are available, allowing the user to create an event database, download data from International Federation of Digital Seismograph Networks services, inspect the background noise, and compute synthetic seismograms. ISP is written in Python3, supported by several open-source and/or publicly available tools. Its modular design allows for new features to be added in a collaborative development environment. Y1 - 2022 U6 - https://doi.org/10.1785/0220210205 SN - 0895-0695 SN - 1938-2057 VL - 93 IS - 3 SP - 1895 EP - 1908 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Blanchard, Ingrid A1 - Petitgirard, Sylvain A1 - Laurenz, Vera A1 - Miyajima, Nobuyoshi A1 - Wilke, Max A1 - Rubie, David C. A1 - Lobanov, Sergey S. A1 - Hennet, Louis A1 - Morgenroth, Wolfgang A1 - Tucoulou, Rémi A1 - Bonino, Valentina A1 - Zhao, Xuchao A1 - Franchi, Ian T1 - Chemical analysis of trace elements at the nanoscale in samples recovered from laser-heated diamond anvil cell experiments JF - Physics and chemistry of minerals N2 - High pressure and high temperature experiments performed with laser-heated diamond anvil cells (LH-DAC) are being extensively used in geosciences to study matter at conditions prevailing in planetary interiors. Due to the size of the apparatus itself, the samples that are produced are extremely small, on the order of few tens of micrometers. There are several ways to analyze the samples and extract physical, chemical or structural information, using either in situ or ex situ methods. In this paper, we compare two nanoprobe techniques, namely nano-XRF and NanoSIMS, that can be used to analyze recovered samples synthetized in a LH-DAC. With these techniques, it is possible to extract the spatial distribution of chemical elements in the samples. We show the results for several standards and discuss the importance of proper calibration for the acquisition of quantifiable results. We used these two nanoprobe techniques to retrieve elemental ratios of dilute species (few tens of ppm) in quenched experimental molten samples relevant for the formation of the iron-rich core of the Earth. We finally discuss the applications of such probes to constrain the partitioning of trace elements between metal and silicate phases, with a focus on moderately siderophile elements, tungsten and molybdenum. KW - NanoSIMS KW - Nano-XRF KW - Diamond anvil cell KW - Focused ion beam Y1 - 2022 U6 - https://doi.org/10.1007/s00269-022-01193-7 SN - 0342-1791 SN - 1432-2021 VL - 49 IS - 6 PB - Springer CY - New York ER - TY - JOUR A1 - Weidle, Christian A1 - Wiesenberg, Lars A1 - El-Sharkawy, Amr A1 - Krüger, Frank A1 - Scharf, Andreas A1 - Agard, Philippe A1 - Meier, Thomas T1 - A 3-D crustal shear wave velocity model and Moho map below the Semail Ophiolite, eastern Arabia JF - Geophysical journal international N2 - The Semail Ophiolite in eastern Arabia is the largest and best-exposed slice of oceanic lithosphere on land. Detailed knowledge of the tectonic evolution of the shallow crust, in particular during and after ophiolite obduction in Late Cretaceous times is contrasted by few constraints on physical and compositional properties of the middle and lower continental crust below the obducted units. The role of inherited, pre-obduction crustal architecture remains therefore unaccounted for in our understanding of crustal evolution and the present-day geology. Based on seismological data acquired during a 27-month campaign in northern Oman, Ambient Seismic Noise Tomography and Receiver Function analysis provide for the first time a 3-D radially anisotropic shear wave velocity (V-S) model and a consistent Moho map below the iconic Semail Ophiolite. The model highlights deep crustal boundaries that segment the eastern Arabian basement in two distinct units. The previously undescribed Western Jabal Akhdar Zone separates Arabian crust with typical continental properties and a thickness of similar to 40-45 km in the northwest from a compositionally different terrane in the southeast that is interpreted as a terrane accreted during the Pan-African orogeny in Neoproterozoic times. East of the Ibra Zone, another deep crustal boundary, crustal thickness decreases to 30-35 km and very high lower crustal V-S suggest large-scale mafic intrusions into, and possible underplating of the Arabian continental crust that occurred most likely during Permian breakup of Pangea. Mafic reworking is sharply bounded by the (upper crustal) Semail Gap Fault Zone, northwest of which no such high velocities are found in the crust. Topography of the Oman Mountains is supported by a mild crustal root and Moho depth below the highest topography, the Jabal Akhdar Dome, is similar to 42 km. Radial anisotropy is robustly resolved in the upper crust and aids in discriminating dipping allochthonous units from autochthonous sedimentary rocks that are indistinguishable by isotropic V-S alone. Lateral thickness variations of the ophiolite highlight the Haylayn Ophiolite Massif on the northern flank of Jabal Akhdar Dome and the Hawasina Window as the deepest reaching unit. Ophiolite thickness is similar to 10 km in the southern and northern massifs, and <= 5 km elsewhere. KW - Composition and structure of the continental crust KW - Asia KW - Body waves KW - Seismic anisotropy KW - Seismic tomography KW - Surface waves and free oscillations Y1 - 2022 U6 - https://doi.org/10.1093/gji/ggac223 SN - 0956-540X SN - 1365-246X VL - 231 IS - 2 SP - 817 EP - 834 PB - Oxford University Press CY - Oxford ER -