TY - JOUR A1 - Malinova, Irina A1 - Alseekh, Saleh A1 - Feil, Regina A1 - Fernie, Alisdair R. A1 - Baumann, Otto A1 - Schoettler, Mark Aurel A1 - Lunn, John Edward A1 - Fettke, Jörg T1 - Starch Synthase 4 and Plastidal Phosphorylase Differentially Affect Starch Granule Number and Morphology JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - The process of starch granule formation in leaves of Arabidopsis ( Arabidopsis thaliana) is obscure. Besides STARCH SYNTHASE4 (SS4), the PLASTIDIAL PHOSPHORYLASE (PHS1) also seems to be involved, since dpe2-1/phs1a double mutants lacking both PHS1 and the cytosolic DISPROPORTIONATING ENZYME2 (DPE2) displayed only one starch granule per chloroplast under normal growth conditions. For further studies, a dpe2-1/phs1a/ss4 triple mutant and various combinations of double mutants were generated and metabolically analyzed with a focus on starch metabolism. The dpe2-1/phs1a/ ss4 mutant revealed a massive starch excess phenotype. Furthermore, these plants grown under 12 h of light/12 h of dark harbored a single large and spherical starch granule per plastid. The number of starch granules was constant when the light/dark regime was altered, but this was not observed in the parental lines. With regard to growth, photosynthetic parameters, and metabolic analyses, the triple mutant additionally displayed alterations in comparison with ss4 and dpe21/phs1a. The results clearly illustrate that PHS1 and SS4 are differently involved in starch granule formation and do not act in series. However, SS4 appears to exert a stronger influence. In connection with the characterized double mutants, we discuss the generation of starch granules and the observed formation of spherical starch granules. Y1 - 2017 U6 - https://doi.org/10.1104/pp.16.01859 SN - 0032-0889 SN - 1532-2548 VL - 174 SP - 73 EP - 85 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Zhang, Youjun A1 - Sun, Feng A1 - Fettke, Jörg A1 - Schoettler, Mark Aurel A1 - Ramsden, Lawrence A1 - Fernie, Alisdair R. A1 - Lim, Boon Leong T1 - Heterologous expression of AtPAP2 in transgenic potato influences carbon metabolism and tuber development JF - FEBS letters : the journal for rapid publication of short reports in molecular biosciences N2 - Changes in carbon flow and sink/source activities can affect floral, architectural, and reproductive traits of plants. In potato, overexpression (OE) of the purple acid phosphatase 2 of Arabidopsis (AtPAP2) resulted in earlier flowering, faster growth rate, increased tubers and tuber starch content, and higher photosynthesis rate. There was a significant change in sucrose, glucose and fructose levels in leaves, phloem and sink biomass of the OE lines, consistent with an increased expression of sucrose transporter 1 (StSUT1). Furthermore, the expression levels and enzyme activity of sucrose-phosphate synthase (SPS) were also significantly increased in the OE lines. These findings strongly suggest that higher carbon supply from the source and improved sink strength can improve potato tuber yield. (C) 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. KW - Potato KW - AtPAP2 KW - Photosynthesis KW - Tuber yield KW - Sugar efflux Y1 - 2014 U6 - https://doi.org/10.1016/j.febslet.2014.08.019 SN - 0014-5793 SN - 1873-3468 VL - 588 IS - 20 SP - 3726 EP - 3731 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Janowski, Marcin Andrzej A1 - Zoschke, Reimo A1 - Scharff, Lars B. A1 - Jaime, Silvia Martinez A1 - Ferrari, Camilla A1 - Proost, Sebastian A1 - Xiong, Jonathan Ng Wei A1 - Omranian, Nooshin A1 - Musialak-Lange, Magdalena A1 - Nikoloski, Zoran A1 - Graf, Alexander A1 - Schoettler, Mark Aurel A1 - Sampathkumar, Arun A1 - Vaid, Neha A1 - Mutwil, Marek T1 - AtRsgA from Arabidopsis thaliana is important for maturation of the small subunit of the chloroplast ribosome JF - The plant journal N2 - Plastid ribosomes are very similar in structure and function to the ribosomes of their bacterial ancestors. Since ribosome biogenesis is not thermodynamically favorable under biological conditions it requires the activity of many assembly factors. Here we have characterized a homolog of bacterial RsgA in Arabidopsis thaliana and show that it can complement the bacterial homolog. Functional characterization of a strong mutant in Arabidopsis revealed that the protein is essential for plant viability, while a weak mutant produced dwarf, chlorotic plants that incorporated immature pre-16S ribosomal RNA into translating ribosomes. Physiological analysis of the mutant plants revealed smaller, but more numerous, chloroplasts in the mesophyll cells, reduction of chlorophyll a and b, depletion of proplastids from the rib meristem and decreased photosynthetic electron transport rate and efficiency. Comparative RNA sequencing and proteomic analysis of the weak mutant and wild-type plants revealed that various biotic stress-related, transcriptional regulation and post-transcriptional modification pathways were repressed in the mutant. Intriguingly, while nuclear- and chloroplast-encoded photosynthesis-related proteins were less abundant in the mutant, the corresponding transcripts were increased, suggesting an elaborate compensatory mechanism, potentially via differentially active retrograde signaling pathways. To conclude, this study reveals a chloroplast ribosome assembly factor and outlines the transcriptomic and proteomic responses of the compensatory mechanism activated during decreased chloroplast function. Significance Statement AtRsgA is an assembly factor necessary for maturation of the small subunit of the chloroplast ribosome. Depletion of AtRsgA leads to dwarfed, chlorotic plants, a decrease of mature 16S rRNA and smaller, but more numerous, chloroplasts. Large-scale transcriptomic and proteomic analysis revealed that chloroplast-encoded and -targeted proteins were less abundant, while the corresponding transcripts were increased in the mutant. We analyze the transcriptional responses of several retrograde signaling pathways to suggest the mechanism underlying this compensatory response. KW - ribosome assembly KW - chloroplast ribosome KW - assembly factor KW - 30S subunit KW - RsgA KW - Arabidopsis thaliana Y1 - 2018 U6 - https://doi.org/10.1111/tpj.14040 SN - 0960-7412 SN - 1365-313X VL - 96 IS - 2 SP - 404 EP - 420 PB - Wiley CY - Hoboken ER -