TY - JOUR A1 - Werno, Martin Witold A1 - Wilhelmi, Ilka A1 - Kuropka, Benno A1 - Ebert, Franziska A1 - Freund, Christian A1 - Schürmann, Annette T1 - The GTPase ARFRP1 affects lipid droplet protein composition and triglyceride release from intracellular storage of intestinal Caco-2 cells JF - Biochemical and biophysical research communications N2 - Intestinal release of dietary triglycerides via chylomicrons is the major contributor to elevated postprandial triglyceride levels. Dietary lipids can be transiently stored in cytosolic lipid droplets (LDs) located in intestinal enterocytes for later release. ADP ribosylation factor-related protein 1 (ARFRP1) participates in processes of LD growth in adipocytes and in lipidation of lipoproteins in liver and intestine. This study aims to explore the impact of ARFRP1 on LD organization and its interplay with chylomicron-mediated triglyceride release in intestinal-like Caco-2 cells. Suppression of Arfrp1 reduced release of intracellularly derived triglycerides (0.69-fold) and increased the abundance of transitional endoplasmic reticulum ATPase TERA/VCP, fatty acid synthase-associated factor 2 (FAF2) and perilipin 2 (Plin2) at the LD surface. Furthermore, TERA/VCP and FAF2 co-occurred more frequently with ATGL at LDs, suggesting a reduced adipocyte triglyceride lipase (ATGL)-mediated lipolysis. Accordingly, inhibition of lipolysis reduced lipid release from intracellular storage pools by the same magnitude as Arfrp1 depletion. Thus, the lack of Arfrp1 increases the abundance of lipolysis-modulating enzymes TERA/VCP, FAF2 and Plin2 at LDs, which might decrease lipolysis and reduce availability of fatty acids for triglyceride synthesis and their release via chylomicrons. (C) 2018 The Authors. Published by Elsevier Inc. KW - Chylomicron KW - Lipid droplet proteome KW - Triglyceride secretion KW - Lipolysis Y1 - 2018 U6 - https://doi.org/10.1016/j.bbrc.2018.10.092 SN - 0006-291X SN - 1090-2104 VL - 506 IS - 1 SP - 259 EP - 265 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Wilhelmi, Ilka A1 - Grunwald, Stephan A1 - Gimber, Niclas A1 - Popp, Oliver A1 - Dittmar, Gunnar A1 - Arumughan, Anup A1 - Wanker, Erich E. A1 - Laeger, Thomas A1 - Schmoranzer, Jan A1 - Daumke, Oliver A1 - Schürmann, Annette T1 - The ARFRP1-dependent Golgi scaffolding protein GOPC is required for insulin secretion from pancreatic 13-cells JF - Molecular metabolism N2 - Objective: Hormone secretion from metabolically active tissues, such as pancreatic islets, is governed by specific and highly regulated signaling pathways. Defects in insulin secretion are among the major causes of diabetes. The molecular mechanisms underlying regulated insulin secretion are, however, not yet completely understood. In this work, we studied the role of the GTPase ARFRP1 on insulin secretion from pancreatic 13-cells.
Methods: A 13-cell-specific Arfrp1 knockout mouse was phenotypically characterized. Pulldown experiments and mass spectrometry analysis were employed to screen for new ARFRP1-interacting proteins. Co-immunoprecipitation assays as well as super-resolution microscopy were applied for validation.
Results: The GTPase ARFRP1 interacts with the Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC). Both proteins are co localized at the trans-Golgi network and regulate the first and second phase of insulin secretion by controlling the plasma membrane localization of the SNARE protein SNAP25. Downregulation of both GOPC and ARFRP1 in Min6 cells interferes with the plasma membrane localization of SNAP25 and enhances its degradation, thereby impairing glucose-stimulated insulin release from 13-cells. In turn, overexpression of SNAP25 as well as GOPC restores insulin secretion in islets from 13-cell-specific Arfrp1 knockout mice.
Conclusion: Our results identify a hitherto unrecognized pathway required for insulin secretion at the level of trans-Golgi sorting. (c) 2020 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). KW - Insulin secretion KW - Endosomal sorting KW - SNARE proteins KW - trans-Golgi KW - network Y1 - 2020 U6 - https://doi.org/10.1016/j.molmet.2020.101151 SN - 2212-8778 VL - 45 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Henkel, Janin A1 - Frede, Katja A1 - Schanze, Nancy A1 - Vogel, Heike A1 - Schürmann, Annette A1 - Spruß, Astrid A1 - Bergheim, Ina A1 - Püschel, Gerhard Paul T1 - Stimulation of fat accumulation in hepatocytes by PGE(2)-dependent repression of hepatic lipolysis, beta-oxidation and VLDL-synthesis JF - Laboratory investigation : the basic and translational pathology research journal ; an official journal of the United States and Canadian Academy of Pathology N2 - Hepatic steatosis is recognized as hepatic presentation of the metabolic syndrome. Hyperinsulinaemia, which shifts fatty acid oxidation to de novo lipogenesis and lipid storage in the liver, appears to be a principal elicitor particularly in the early stages of disease development. The impact of PGE(2), which has previously been shown to attenuate insulin signaling and hence might reduce insulin-dependent lipid accumulation, on insulin-induced steatosis of hepatocytes was studied. The PGE(2)-generating capacity was enhanced in various obese mouse models by the induction of cyclooxygenase 2 and microsomal prostaglandin E-synthases (mPGES1, mPGES2). PGE(2) attenuated the insulin-dependent induction of SREBP-1c and its target genes glucokinase and fatty acid synthase. Nevertheless, PGE(2) enhanced incorporation of glucose into hepatic triglycerides synergistically with insulin. This was most likely due to a combination of a PGE(2)-dependent repression of (1) the key lipolytic enzyme adipose triglyceride lipase, (2) carnitine-palmitoyltransferase 1, a key regulator of mitochondrial beta-oxidation, and (3) microsomal transfer protein, as well as (4) apolipoprotein B, key components of the VLDL synthesis. Repression of PGC1 alpha, a common upstream regulator of these genes, was identified as a possible cause. In support of this hypothesis, overexpression of PGC1 alpha completely blunted the PGE(2)-dependent fat accumulation. PGE(2) enhanced lipid accumulation synergistically with insulin, despite attenuating insulin signaling and might thus contribute to the development of hepatic steatosis. Induction of enzymes involved in PGE(2) synthesis in in vivo models of obesity imply a potential role of prostanoids in the development of NAFLD and NASH. Laboratory Investigation (2012) 92, 1597-1606; doi:10.1038/labinvest.2012.128; published online 10 September 2012 KW - cyclooxygenase KW - hepatic steatosis KW - mPGES KW - NAFLD KW - NASH KW - type 2 diabetes (T2DM) KW - PGC1 alpha Y1 - 2012 U6 - https://doi.org/10.1038/labinvest.2012.128 SN - 0023-6837 VL - 92 IS - 11 SP - 1597 EP - 1606 PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Kehm, Richard A1 - Jähnert, Markus A1 - Deubel, Stefanie A1 - Flore, Tanina A1 - König, Jeannette A1 - Jung, Tobias A1 - Stadion, Mandy A1 - Jonas, Wenke A1 - Schürmann, Annette A1 - Grune, Tilman A1 - Höhn, Annika T1 - Redox homeostasis and cell cycle activation mediate beta-cell mass expansion in aged, diabetes-prone mice under metabolic stress conditions: role of thioredoxin-interacting protein (TXNIP) JF - Redox Biology N2 - Overnutrition contributes to insulin resistance, obesity and metabolic stress, initiating a loss of functional beta-cells and diabetes development. Whether these damaging effects are amplified in advanced age is barely investigated. Therefore, New Zealand Obese (NZO) mice, a well-established model for the investigation of human obesity-associated type 2 diabetes, were fed a metabolically challenging diet with a high-fat, carbohydrate restricted period followed by a carbohydrate intervention in young as well as advanced age. Interestingly, while young NZO mice developed massive hyperglycemia in response to carbohydrate feeding, leading to beta-cell dysfunction and cell death, aged counterparts compensated the increased insulin demand by persistent beta-cell function and beta-cell mass expansion. Beta-cell loss in young NZO islets was linked to increased expression of thioredoxin-interacting protein (TXNIP), presumably initiating an apoptosis-signaling cascade via caspase-3 activation. In contrast, islets of aged NZOs exhibited a sustained redox balance without changes in TXNIP expression, associated with higher proliferative potential by cell cycle activation. These findings support the relevance of a maintained proliferative potential and redox homeostasis for preserving islet functionality under metabolic stress, with the peculiarity that this adaptive response emerged with advanced age in diabetesprone NZO mice. KW - aging KW - redox homeostasis KW - metabolic stress KW - beta-cells KW - cell cycle KW - thioredoxin-interacting protein Y1 - 2020 U6 - https://doi.org/10.1016/j.redox.2020.101748 SN - 2213-2317 VL - 37 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Castaño Martínez, María Teresa A1 - Schumacher, Fabian A1 - Schumacher, Silke A1 - Kochlik, Bastian Max A1 - Weber, Daniela A1 - Grune, Tilman A1 - Biemann, Ronald A1 - McCann, Adrian A1 - Abraham, Klaus A1 - Weikert, Cornelia A1 - Kleuse, Burkhard A1 - Schürmann, Annette A1 - Laeger, Thomas T1 - Methionine restriction prevents onset of type 2 diabetes in NZO mice JF - The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology N2 - Dietary methionine restriction (MR) is well known to reduce body weight by increasing energy expenditure (EE) and insulin sensitivity. An elevated concentration of circulating fibroblast growth factor 21 (FGF21) has been implicated as a potential underlying mechanism. The aims of our study were to test whether dietary MR in the context of a high-fat regimen protects against type 2 diabetes in mice and to investigate whether vegan and vegetarian diets, which have naturally low methionine levels, modulate circulating FGF21 in humans. New Zealand obese (NZO) mice, a model for polygenic obesity and type 2 diabetes, were placed on isocaloric high-fat diets (protein, 16 kcal%; carbohydrate, 52 kcal%; fat, 32 kcal%) that provided methionine at control (Con; 0.86% methionine) or low levels (0.17%) for 9 wk. Markers of glucose homeostasis and insulin sensitivity were analyzed. Among humans, low methionine intake and circulating FGF21 levels were investigated by comparing a vegan and a vegetarian diet to an omnivore diet and evaluating the effect of a short-term vegetarian diet on FGF21 induction. In comparison with the Con group, MR led to elevated plasma FGF21 levels and prevented the onset of hyperglycemia in NZO mice. MR-fed mice exhibited increased insulin sensitivity, higher plasma adiponectin levels, increased EE, and up-regulated expression of thermogenic genes in subcutaneous white adipose tissue. Food intake and fat mass did not change. Plasma FGF21 levels were markedly higher in vegan humans compared with omnivores, and circulating FGF21 levels increased significantly in omnivores after 4 d on a vegetarian diet. These data suggest that MR induces FGF21 and protects NZO mice from high-fat diet-induced glucose intolerance and type 2 diabetes. The normoglycemic phenotype in vegans and vegetarians may be caused by induced FGF21. MR akin to vegan and vegetarian diets in humans may offer metabolic benefits via increased circulating levels of FGF21 and merits further investigation.-Castano-Martinez, T., Schumacher, F., Schumacher, S., Kochlik, B., Weber, D., Grune, T., Biemann, R., McCann, A., Abraham, K., Weikert, C., Kleuser, B., Schurmann, A., Laeger, T. Methionine restriction prevents onset of type 2 diabetes in NZO mice. KW - energy expenditure KW - hyperglycemia KW - obesity KW - vegan KW - vegetarian Y1 - 2019 U6 - https://doi.org/10.1096/fj.201900150R SN - 0892-6638 SN - 1530-6860 VL - 33 IS - 6 SP - 7092 EP - 7102 PB - Federation of American Societies for Experimental Biology CY - Bethesda ER - TY - JOUR A1 - Graja, Antonia A1 - Garcia-Carrizo, Francisco A1 - Jank, Anne-Marie A1 - Gohlke, Sabrina A1 - Ambrosi, Thomas H. A1 - Jonas, Wenke A1 - Ussar, Siegfried A1 - Kern, Matthias A1 - Schürmann, Annette A1 - Aleksandrova, Krasimira A1 - Bluher, Matthias A1 - Schulz, Tim Julius T1 - Loss of periostin occurs in aging adipose tissue of mice and its genetic ablation impairs adipose tissue lipid metabolism JF - Aging Cell N2 - Remodeling of the extracellular matrix is a key component of the metabolic adaptations of adipose tissue in response to dietary and physiological challenges. Disruption of its integrity is a well-known aspect of adipose tissue dysfunction, for instance, during aging and obesity. Adipocyte regeneration from a tissue-resident pool of mesenchymal stem cells is part of normal tissue homeostasis. Among the pathophysiological consequences of adipogenic stem cell aging, characteristic changes in the secretory phenotype, which includes matrix-modifying proteins, have been described. Here, we show that the expression of the matricellular protein periostin, a component of the extracellular matrix produced and secreted by adipose tissue-resident interstitial cells, is markedly decreased in aged brown and white adipose tissue depots. Using a mouse model, we demonstrate that the adaptation of adipose tissue to adrenergic stimulation and high-fat diet feeding is impaired in animals with systemic ablation of the gene encoding for periostin. Our data suggest that loss of periostin attenuates lipid metabolism in adipose tissue, thus recapitulating one aspect of age-related metabolic dysfunction. In human white adipose tissue, periostin expression showed an unexpected positive correlation with age of study participants. This correlation, however, was no longer evident after adjusting for BMI or plasma lipid and liver function biomarkers. These findings taken together suggest that age-related alterations of the adipose tissue extracellular matrix may contribute to the development of metabolic disease by negatively affecting nutrient homeostasis. KW - adipogenic progenitor cells KW - adipose tissue KW - aging KW - extracellular matrix KW - fatty acid metabolism KW - periostin Y1 - 2018 U6 - https://doi.org/10.1111/acel.12810 SN - 1474-9718 SN - 1474-9726 VL - 17 IS - 5 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wittenbecher, Clemens A1 - Ouni, Meriem A1 - Kuxhaus, Olga A1 - Jähnert, Markus A1 - Gottmann, Pascal A1 - Teichmann, Andrea A1 - Meidtner, Karina A1 - Kriebel, Jennifer A1 - Grallert, Harald A1 - Pischon, Tobias A1 - Boeing, Heiner A1 - Schulze, Matthias Bernd A1 - Schürmann, Annette T1 - Insulin-Like Growth Factor Binding Protein 2 (IGFBP-2) and the Risk of Developing Type 2 Diabetes JF - Diabetes : a journal of the American Diabetes Association N2 - Recent studies suggest that insulin-like growth factor binding protein 2 (IGFBP-2) may protect against type 2 diabetes, but population-based human studies are scarce. We aimed to investigate the prospective association of circulating IGFBP-2 concentrations and of differential methylation in the IGFBP-2 gene with type 2 diabetes risk. Y1 - 2019 U6 - https://doi.org/10.2337/db18-0620 SN - 0012-1797 SN - 1939-327X VL - 68 IS - 1 SP - 188 EP - 197 PB - American Diabetes Association CY - Alexandria ER - TY - JOUR A1 - Henkel, Janin A1 - Coleman, Charles Dominic A1 - Schraplau, Anne A1 - Jöhrens, Korinna A1 - Weber, Daniela A1 - Castro, Jose Pedro A1 - Hugo, Martin A1 - Schulz, Tim Julius A1 - Krämer, Stephanie A1 - Schürmann, Annette A1 - Püschel, Gerhard Paul T1 - Induction of Steatohepatitis (NASH) with Insulin Resistance in Wild-type B6 Mice by a Western-type Diet Containing Soybean Oil and Cholesterol JF - Molecular medicine N2 - Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are hepatic manifestations of the metabolic syndrome. Many currently used animal models of NAFLD/NASH lack clinical features of either NASH or metabolic syndrome such as hepatic inflammation and fibrosis (e.g., high-fat diets) or overweight and insulin resistance (e.g., methionine-choline-deficient diets), or they are based on monogenetic defects (e.g., ob/ob mice). In the current study, a Western-type diet containing soybean oil with high n-6-PUFA and 0.75% cholesterol (SOD + Cho) induced steatosis, inflammation and fibrosis accompanied by hepatic lipid peroxidation and oxidative stress in livers of C57BL/6-mice, which in addition showed increased weight gain and insulin resistance, thus displaying a phenotype closely resembling all clinical features of NASH in patients with metabolic syndrome. In striking contrast, a soybean oil-containing Western-type diet without cholesterol (SOD) induced only mild steatosis but not hepatic inflammation, fibrosis, weight gain or insulin resistance. Another high-fat diet, mainly consisting of lard and supplemented with fructose in drinking water (LAD + Fru), resulted in more prominent weight gain, insulin resistance and hepatic steatosis than SOD + Cho, but livers were devoid of inflammation and fibrosis. Although both LAD + Fru-and SOD + Cho-fed animals had high plasma cholesterol, liver cholesterol was elevated only in SOD + Cho animals. Cholesterol induced expression of chemotactic and inflammatory cytokines in cultured Kupffer cells and rendered hepatocytes more susceptible to apoptosis. In summary, dietary cholesterol in the SOD + Cho diet may trigger hepatic inflammation and fibrosis. SOD + Cho-fed animals may be a useful disease model displaying many clinical features of patients with the metabolic syndrome and NASH. KW - Nonalcoholic Steatohepatitis (NASH) KW - Typical Western Diet KW - Nonalcoholic Fatty Liver Disease (NAFLD) KW - Dietary Cholesterol KW - Kupffer Cells Y1 - 2017 U6 - https://doi.org/10.2119/molmed.2016.00203 SN - 1076-1551 SN - 1528-3658 VL - 23 SP - 70 EP - 82 PB - Feinstein Inst. for Medical Research CY - Manhasset ER - TY - JOUR A1 - Aga-Barfknecht, Heja A1 - Hallahan, Nicole A1 - Gottmann, Pascal A1 - Jähnert, Markus A1 - Osburg, Sophie A1 - Schulze, Gunnar A1 - Kamitz, Anne A1 - Arends, Danny A1 - Brockmann, Gudrun A1 - Schallschmidt, Tanja A1 - Lebek, Sandra A1 - Chadt, Alexandra A1 - Al-Hasani, Hadi A1 - Joost, Hans-Georg A1 - Schürmann, Annette A1 - Vogel, Heike T1 - Identification of novel potential type 2 diabetes genes mediating beta-cell loss and hyperglycemia using positional cloning JF - Frontiers in genetics N2 - Type 2 diabetes (T2D) is a complex metabolic disease regulated by an interaction of genetic predisposition and environmental factors. To understand the genetic contribution in the development of diabetes, mice varying in their disease susceptibility were crossed with the obese and diabetes-prone New Zealand obese (NZO) mouse. Subsequent whole-genome sequence scans revealed one major quantitative trait loci (QTL),Nidd/DBAon chromosome 4, linked to elevated blood glucose and reduced plasma insulin and low levels of pancreatic insulin. Phenotypical characterization of congenic mice carrying 13.6 Mbp of the critical fragment of DBA mice displayed severe hyperglycemia and impaired glucose clearance at week 10, decreased glucose response in week 13, and loss of beta-cells and pancreatic insulin in week 16. To identify the responsible gene variant(s), further congenic mice were generated and phenotyped, which resulted in a fragment of 3.3 Mbp that was sufficient to induce hyperglycemia. By combining transcriptome analysis and haplotype mapping, the number of putative responsible variant(s) was narrowed from initial 284 to 18 genes, including gene models and non-coding RNAs. Consideration of haplotype blocks reduced the number of candidate genes to four (Kti12,Osbpl9,Ttc39a, andCalr4) as potential T2D candidates as they display a differential expression in pancreatic islets and/or sequence variation. In conclusion, the integration of comparative analysis of multiple inbred populations such as haplotype mapping, transcriptomics, and sequence data substantially improved the mapping resolution of the diabetes QTLNidd/DBA. Future studies are necessary to understand the exact role of the different candidates in beta-cell function and their contribution in maintaining glycemic control. KW - type 2 diabetes KW - beta-cell loss KW - insulin KW - positional cloning KW - transcriptomics KW - haplotype Y1 - 2020 U6 - https://doi.org/10.3389/fgene.2020.567191 SN - 1664-8021 VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Jonas, Wenke A1 - Kluth, Oliver A1 - Helms, Anett A1 - Voss, Sarah A1 - Jahnert, Markus A1 - Gottmann, Pascal A1 - Speckmann, Thilo A1 - Knebel, Birgit A1 - Chadt, Alexandra A1 - Al-Hasani, Hadi A1 - Schürmann, Annette A1 - Vogel, Heike T1 - Identification of novel genes involved in hyperglycemia in mice JF - International journal of molecular sciences N2 - Current attempts to prevent and manage type 2 diabetes have been moderately effective, and a better understanding of the molecular roots of this complex disease is important to develop more successful and precise treatment options. Recently, we initiated the collective diabetes cross, where four mouse inbred strains differing in their diabetes susceptibility were crossed with the obese and diabetes-prone NZO strain and identified the quantitative trait loci (QTL) Nidd13/NZO, a genomic region on chromosome 13 that correlates with hyperglycemia in NZO allele carriers compared to B6 controls. Subsequent analysis of the critical region, harboring 644 genes, included expression studies in pancreatic islets of congenic Nidd13/NZO mice, integration of single-cell data from parental NZO and B6 islets as well as haplotype analysis. Finally, of the five genes (Acot12, S100z, Ankrd55, Rnf180, and Iqgap2) within the polymorphic haplotype block that are differently expressed in islets of B6 compared to NZO mice, we identified the calcium-binding protein S100z gene to affect islet cell proliferation as well as apoptosis when overexpressed in MINE cells. In summary, we define S100z as the most striking gene to be causal for the diabetes QTL Nidd13/NZO by affecting beta-cell proliferation and apoptosis. Thus, S100z is an entirely novel diabetes gene regulating islet cell function. KW - beta-cell KW - diabetes KW - proliferation KW - apoptosis KW - QTL Y1 - 2022 U6 - https://doi.org/10.3390/ijms23063205 SN - 1661-6596 SN - 1422-0067 VL - 23 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Gohlke, Sabrina A1 - Zagoriy, Vyacheslav A1 - Inostroza, Alvaro Cuadros A1 - Meret, Michael A1 - Mancini, Carola A1 - Japtok, Lukasz A1 - Schumacher, Fabian A1 - Kuhlow, Doreen A1 - Graja, Antonia A1 - Stephanowitz, Heike A1 - Jähnert, Markus A1 - Krause, Eberhard A1 - Wernitz, Andreas A1 - Petzke, Klaus-Juergen A1 - Schürmann, Annette A1 - Kleuser, Burkhard A1 - Schulz, Tim Julius T1 - Identification of functional lipid metabolism biomarkers of brown adipose tissue aging JF - Molecular Metabolism N2 - Objective: Aging is accompanied by loss of brown adipocytes and a decline in their thermogenic potential, which may exacerbate the development of adiposity and other metabolic disorders. Presently, only limited evidence exists describing the molecular alterations leading to impaired brown adipogenesis with aging and the contribution of these processes to changes of systemic energy metabolism. Methods: Samples of young and aged murine brown and white adipose tissue were used to compare age-related changes of brown adipogenic gene expression and thermogenesis-related lipid mobilization. To identify potential markers of brown adipose tissue aging, non-targeted proteomic and metabolomic as well as targeted lipid analyses were conducted on young and aged tissue samples. Subsequently, the effects of several candidate lipid classes on brown adipocyte function were examined. Results: Corroborating previous reports of reduced expression of uncoupling protein-1, we observe impaired signaling required for lipid mobilization in aged brown fat after adrenergic stimulation. Omics analyses additionally confirm the age-related impairment of lipid homeostasis and reveal the accumulation of specific lipid classes, including certain sphingolipids, ceramides, and dolichols in aged brown fat. While ceramides as well as enzymes of dolichol metabolism inhibit brown adipogenesis, inhibition of sphingosine 1-phosphate receptor 2 induces brown adipocyte differentiation. Conclusions: Our functional analyses show that changes in specific lipid species, as observed during aging, may contribute to reduced thermogenic potential. They thus uncover potential biomarkers of aging as well as molecular mechanisms that could contribute to the degradation of brown adipocytes, thereby providing potential treatment strategies of age-related metabolic conditions. KW - Brown adipose tissue KW - Aging KW - Ceramides KW - Sphingolipids KW - Dolichol lipids Y1 - 2019 U6 - https://doi.org/10.1016/j.molmet.2019.03.011 SN - 2212-8778 VL - 24 SP - 1 EP - 17 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Delpero, Manuel A1 - Arends, Danny A1 - Sprechert, Maximilian A1 - Krause, Florian A1 - Kluth, Oliver A1 - Schürmann, Annette A1 - Brockmann, Gudrun A. A1 - Hesse, Deike T1 - Identification of four novel QTL linked to the metabolic syndrome in the Berlin Fat Mouse JF - International journal of obesity / North American Association for the Study of Obesity N2 - Background The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the metabolic syndrome. This study aimed to identify genetic variants associated with impaired glucose metabolism using the obese lines BFMI861-S1 and BFMI861-S2, which are genetically closely related, but differ in several traits. BFMI861-S1 is insulin resistant and stores ectopic fat in the liver, whereas BFMI861-S2 is insulin sensitive. Methods In generation 10, 397 males of an advanced intercross line (AIL) BFMI861-S1 x BFMI861-S2 were challenged with a high-fat, high-carbohydrate diet and phenotyped over 25 weeks. QTL-analysis was performed after selective genotyping of 200 mice using the GigaMUGA Genotyping Array. Additional 197 males were genotyped for 7 top SNPs in QTL regions. For the prioritization of positional candidate genes whole genome sequencing and gene expression data of the parental lines were used. Results Overlapping QTL for gonadal adipose tissue weight and blood glucose concentration were detected on chromosome (Chr) 3 (95.8-100.1 Mb), and for gonadal adipose tissue weight, liver weight, and blood glucose concentration on Chr 17 (9.5-26.1 Mb). Causal modeling suggested for Chr 3-QTL direct effects on adipose tissue weight, but indirect effects on blood glucose concentration. Direct effects on adipose tissue weight, liver weight, and blood glucose concentration were suggested for Chr 17-QTL. Prioritized positional candidate genes for the identified QTL were Notch2 and Fmo5 (Chr 3) and Plg and Acat2 (Chr 17). Two additional QTL were detected for gonadal adipose tissue weight on Chr 15 (67.9-74.6 Mb) and for body weight on Chr 16 (3.9-21.4 Mb). Conclusions QTL mapping together with a detailed prioritization approach allowed us to identify candidate genes associated with traits of the metabolic syndrome. In addition, we provided evidence for direct and indirect genetic effects on blood glucose concentration in the insulin-resistant mouse line BFMI861-S1. Y1 - 2022 U6 - https://doi.org/10.1038/s41366-021-00991-3 SN - 0307-0565 SN - 1476-5497 VL - 46 IS - 2 SP - 307 EP - 315 PB - Nature Publ. Group CY - Avenel, NJ ER - TY - JOUR A1 - Hauffe, Robert A1 - Rath, Michaela A1 - Schell, Mareike A1 - Ritter, Katrin A1 - Kappert, Kai A1 - Deubel, Stefanie A1 - Ott, Christiane A1 - Jähnert, Markus A1 - Jonas, Wenke A1 - Schürmann, Annette A1 - Kleinridders, André T1 - HSP60 reduction protects against diet-induced obesity by modulating energy metabolism in adipose tissue JF - Molecular Metabolism N2 - Objective Insulin regulates mitochondrial function, thereby propagating an efficient metabolism. Conversely, diabetes and insulin resistance are linked to mitochondrial dysfunction with a decreased expression of the mitochondrial chaperone HSP60. The aim of this investigation was to determine the effect of a reduced HSP60 expression on the development of obesity and insulin resistance. Methods Control and heterozygous whole-body HSP60 knockout (Hsp60+/−) mice were fed a high-fat diet (HFD, 60% calories from fat) for 16 weeks and subjected to extensive metabolic phenotyping. To understand the effect of HSP60 on white adipose tissue, microarray analysis of gonadal WAT was performed, ex vivo experiments were performed, and a lentiviral knockdown of HSP60 in 3T3-L1 cells was conducted to gain detailed insights into the effect of reduced HSP60 levels on adipocyte homeostasis. Results Male Hsp60+/− mice exhibited lower body weight with lower fat mass. These mice exhibited improved insulin sensitivity compared to control, as assessed by Matsuda Index and HOMA-IR. Accordingly, insulin levels were significantly reduced in Hsp60+/− mice in a glucose tolerance test. However, Hsp60+/− mice exhibited an altered adipose tissue metabolism with elevated insulin-independent glucose uptake, adipocyte hyperplasia in the presence of mitochondrial dysfunction, altered autophagy, and local insulin resistance. Conclusions We discovered that the reduction of HSP60 in mice predominantly affects adipose tissue homeostasis, leading to beneficial alterations in body weight, body composition, and adipocyte morphology, albeit exhibiting local insulin resistance. KW - Mitochondria KW - Stress response KW - Obesity KW - Glucose homeostasis KW - Insulin resistance KW - Adipose tissue Y1 - 2021 U6 - https://doi.org/10.1016/j.molmet.2021.101276 SN - 2212-8778 VL - 53 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam, Niederlande ER - TY - JOUR A1 - Hesse, Deike A1 - Jaschke, Alexander A1 - Kanzleiter, Timo A1 - Witte, Nicole A1 - Augustin, Robert A1 - Hommel, Angela A1 - Püschel, Gerhard Paul A1 - Petzke, Klaus-Jürgen A1 - Joost, Hans-Georg A1 - Schupp, Michael A1 - Schürmann, Annette T1 - GTPase ARFRP1 is essential for normal hepatic glycogen storage and insulin-like growth factor 1 secretion JF - Molecular and cellular biology N2 - The GTPase ADP-ribosylation factor-related protein 1 (ARFRP1) is located at the trans-Golgi compartment and regulates the recruitment of Arf-like 1 (ARL1) and its effector golgin-245 to this compartment. Here, we show that liver-specific knockout of Arfrp1 in the mouse (Arfrp1(liv-/-)) resulted in early growth retardation, which was associated with reduced hepatic insulin-like growth factor 1 (IGF1) secretion. Accordingly, suppression of Arfrp1 in primary hepatocytes resulted in a significant reduction of IGF1 release. However, the hepatic secretion of IGF-binding protein 2 (IGFBP2) was not affected in the absence of ARFRP1. In addition, Arfrp1(liv-/-) mice exhibited decreased glucose transport into the liver, leading to a 50% reduction of glycogen stores as well as a marked retardation of glycogen storage after fasting and refeeding. These abnormalities in glucose metabolism were attributable to reduced protein levels and intracellular retention of the glucose transporter GLUT2 in Arfrp1(liv-/-) livers. As a consequence of impaired glucose uptake into the liver, the expression levels of carbohydrate response element binding protein (ChREBP), a transcription factor regulated by glucose concentration, and its target genes (glucokinase and pyruvate kinase) were markedly reduced. Our data indicate that ARFRP1 in the liver is involved in the regulation of IGF1 secretion and GLUT2 sorting and is thereby essential for normal growth and glycogen storage. Y1 - 2012 U6 - https://doi.org/10.1128/MCB.00522-12 SN - 0270-7306 VL - 32 IS - 21 SP - 4363 EP - 4374 PB - American Society for Microbiology CY - Washington ER - TY - JOUR A1 - Jonas, Wenke A1 - Schürmann, Annette T1 - Genetic and epigenetic factors determining NAFLD risk JF - Molecular metabolism N2 - Background: Hepatic steatosis is a common chronic liver disease that can progress into more severe stages of NAFLD or promote the development of life-threatening secondary diseases for some of those affected. These include the liver itself (nonalcoholic steatohepatitis or NASH; fibrosis and cirrhosis, and hepatocellular carcinoma) or other organs such as the vessels and the heart (cardiovascular disease) or the islets of Langerhans (type 2 diabetes). In addition to elevated caloric intake and a sedentary lifestyle, genetic and epigenetic predisposition contribute to the development of NAFLD and the secondary diseases. Scope of review: We present data from genome-wide association studies (GWAS) and functional studies in rodents which describe polymorphisms identified in genes relevant for the disease as well as changes caused by altered DNA methylation and gene regulation via specific miRNAs. The review also provides information on the current status of the use of genetic and epigenetic factors as risk markers. Major conclusion: With our overview we provide an insight into the genetic and epigenetic landscape of NAFLD and argue about the applicability of currently defined risk scores for risk stratification and conclude that further efforts are needed to make the scores more usable and meaningful. KW - NAFLD KW - genetic variants KW - epigenetics KW - risk score Y1 - 2020 U6 - https://doi.org/10.1016/j.molmet.2020.101111 SN - 2212-8778 VL - 50 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - McNulty, Margaret A. A1 - Goupil, Brad A. A1 - Albarado, Diana C. A1 - Castaño-Martinez, Teresa A1 - Ambrosi, Thomas H. A1 - Puh, Spela A1 - Schulz, Tim Julius A1 - Schürmann, Annette A1 - Morrison, Christopher D. A1 - Laeger, Thomas T1 - FGF21, not GCN2, influences bone morphology due to dietary protein restrictions JF - Bone Reports N2 - Background: Dietary protein restriction is emerging as an alternative approach to treat obesity and glucose intolerance because it markedly increases plasma fibroblast growth factor 21 (FGF21) concentrations. Similarly, dietary restriction of methionine is known to mimic metabolic effects of energy and protein restriction with FGF21 as a required mechanism. However, dietary protein has been shown to be required for normal bone growth, though there is conflicting evidence as to the influence of dietary protein restriction on bone remodeling. The purpose of the current study was to evaluate the effect of dietary protein and methionine restriction on bone in lean and obese mice, and clarify whether FGF21 and general control nonderepressible 2 (GCN2) kinase, that are part of a novel endocrine pathway implicated in the detection of protein restriction, influence the effect of dietary protein restriction on bone. Methods: Adult wild-type (WT) or Fgf21 KO mice were fed a normal protein (18 kcal%; CON) or low protein (4 kcal%; LP) diet for 2 or 27 weeks. In addition, adult WT or Gcn2 KO mice were fed a CON or LP diet for 27 weeks. Young New Zealand obese (NZO) mice were placed on high-fat diets that provided protein at control (16 kcal%; CON), low levels (4 kcal%) in a high-carbohydrate (LP/HC) or high-fat (LP/HF) regimen, or on high-fat diets (protein, 16 kcal%) that provided methionine at control (0.86%; CON-MR) or low levels (0.17%; MR) for up to 9 weeks. Long bones from the hind limbs of these mice were collected and evaluated with micro-computed tomography (mu CT) for changes in trabecular and cortical architecture and mass. Results: In WT mice the 27-week LP diet significantly reduced cortical bone, and this effect was enhanced by deletion of Fgf21 but not Gcn2. This decrease in bone did not appear after 2 weeks on the LP diet. In addition, Fgf21 KO mice had significantly less bone than their WT counterparts. In obese NZO mice dietary protein and methionine restriction altered bone architecture. The changes were mediated by FGF21 due to methionine restriction in the presence of cystine, which did not increase plasma FGF21 levels and did not affect bone architecture. Conclusions: This study provides direct evidence of a reduction in bone following long-term dietary protein restriction in a mouse model, effects that appear to be mediated by FGF21. KW - dietary restriction KW - protein restriction KW - FGF21 KW - GCN2 KW - microcomputed tomography Y1 - 2020 U6 - https://doi.org/10.1016/j.bonr.2019.100241 SN - 2352-1872 VL - 12 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kanzleiter, Timo A1 - Jaehnert, Markus A1 - Schulze, Gunnar A1 - Selbig, Joachim A1 - Hallahan, Nicole A1 - Schwenk, Robert Wolfgang A1 - Schürmann, Annette T1 - Exercise training alters DNA methylation patterns in genes related to muscle growth and differentiation in mice JF - American journal of physiology : Endocrinology and metabolism N2 - The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA methylation in muscle of trained mice (n = 3). Compared with sedentary controls, 2,762 genes exhibited differentially methylated CpGs (P < 0.05, meth diff >5%, coverage > 10) in their putative promoter regions. Alignment with gene expression data (n = 6) revealed 200 genes with a negative correlation between methylation and expression changes in response to exercise training. The majority of these genes were related to muscle growth and differentiation, and a minor fraction involved in metabolic regulation. Among the candidates were genes that regulate the expression of myogenic regulatory factors (Plexin A2) as well as genes that participate in muscle hypertrophy (Igfbp4) and motor neuron innervation (Dok7). Interestingly, a transcription factor binding site enrichment study discovered significantly enriched occurrence of CpG methylation in the binding sites of the myogenic regulatory factors MyoD and myogenin. These findings suggest that DNA methylation is involved in the regulation of muscle adaptation to regular exercise training. KW - DNA methylation KW - regular exercise training KW - muscle development Y1 - 2015 U6 - https://doi.org/10.1152/ajpendo.00289.2014 SN - 0193-1849 SN - 1522-1555 VL - 308 IS - 10 SP - E912 EP - E920 PB - American Chemical Society CY - Bethesda ER - TY - JOUR A1 - Saussenthaler, Sophie A1 - Ouni, Meriem A1 - Baumeier, Christian A1 - Schwerbel, Kristin A1 - Gottmann, Pascal A1 - Christmann, Sabrina A1 - Laeger, Thomas A1 - Schürmann, Annette T1 - Epigenetic regulation of hepatic Dpp4 expression in response to dietary protein JF - The journal of nutritional biochemistry N2 - Dipeptidyl peptidase 4 (DPP4) is known to be elevated in metabolic disturbances such as obesity, type 2 diabetes and fatty liver disease. Lowering DPP4 concentration by pharmacological inhibition improves glucose homeostasis and exhibits beneficial effects to reduce hepatic fat content. As factors regulating the endogenous expression of Dpp4 are unknown, the aim of this study was to examine whether the Dpp4 expression is epigenetically regulated in response to dietary components. Primary hepatocytes were treated with different macronutrients, and Dpp4 mRNA levels and DPP4 activity were evaluated. Moreover, dietary low-protein intervention was conducted in New Zealand obese (NZO) mice, and subsequently, effects on Dpp4 expression, methylation as well as plasma concentration and activity were determined. Our results indicate that Dpp4 mRNA expression is mediated by DNA methylation in several tissues. We therefore consider the Dpp4 southern shore as tissue differentially methylated region. Amino acids increased Dpp4 expression in primary hepatocytes, whereas glucose and fatty acids were without effect. Dietary protein restriction in NZO mice increased Dpp4 DNA methylation in liver leading to diminished Dpp4 expression and consequently to lowered plasma DPP4 activity. We conclude that protein restriction in the adolescent and adult states is a sufficient strategy to reduce DPP4 which in turn contributes to improve glucose homeostasis. (C) 2018 Published by Elsevier Inc. KW - DPP4 KW - DNA methylation KW - Protein restriction KW - Type 2 diabetes KW - NZO Y1 - 2019 U6 - https://doi.org/10.1016/j.jnutbio.2018.09.025 SN - 0955-2863 SN - 1873-4847 VL - 63 SP - 109 EP - 116 PB - Elsevier CY - New York ER - TY - JOUR A1 - Ouni, Meriem A1 - Schürmann, Annette T1 - Epigenetic contribution to obesity JF - Mammalian genome N2 - Obesity is a worldwide epidemic and contributes to global morbidity and mortality mediated via the development of nonalcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), cardiovascular (CVD) and other diseases. It is a consequence of an elevated caloric intake, a sedentary lifestyle and a genetic as well as an epigenetic predisposition. This review summarizes changes in DNA methylation and microRNAs identified in blood cells and different tissues in obese human and rodent models. It includes information on epigenetic alterations which occur in response to fat-enriched diets, exercise and metabolic surgery and discusses the potential of interventions to reverse epigenetic modifications. Y1 - 2020 U6 - https://doi.org/10.1007/s00335-020-09835-3 SN - 0938-8990 SN - 1432-1777 VL - 31 IS - 5-6 SP - 134 EP - 145 PB - Springer CY - New York, NY ; Berlin ; Heidelberg [u.a.] ER - TY - JOUR A1 - Gancheva, Sofiya A1 - Ouni, Meriem A1 - Jelenik, Tomas A1 - Koliaki, Chrysi A1 - Szendroedi, Julia A1 - Toledo, Frederico G. S. A1 - Markgraf, Daniel Frank A1 - Pesta, Dominik H. A1 - Mastrototaro, Lucia A1 - De Filippo, Elisabetta A1 - Herder, Christian A1 - Jähnert, Markus A1 - Weiss, Jürgen A1 - Strassburger, Klaus A1 - Schlensak, Matthias A1 - Schürmann, Annette A1 - Roden, Michael T1 - Dynamic changes of muscle insulin sensitivity after metabolic surgery JF - Nature Communications N2 - The mechanisms underlying improved insulin sensitivity after surgically-induced weight loss are still unclear. We monitored skeletal muscle metabolism in obese individuals before and over 52 weeks after metabolic surgery. Initial weight loss occurs in parallel with a decrease in muscle oxidative capacity and respiratory control ratio. Persistent elevation of intramyocellular lipid intermediates, likely resulting from unrestrained adipose tissue lipolysis, accompanies the lack of rapid changes in insulin sensitivity. Simultaneously, alterations in skeletal muscle expression of genes involved in calcium/lipid metabolism and mitochondrial function associate with subsequent distinct DNA methylation patterns at 52 weeks after surgery. Thus, initial unfavorable metabolic changes including insulin resistance of adipose tissue and skeletal muscle precede epigenetic modifications of genes involved in muscle energy metabolism and the long-term improvement of insulin sensitivity. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-12081-0 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER -