TY - JOUR A1 - Simonova, Maria A1 - Ivanov, Ivan A1 - Meleshko, Tamara A1 - Kopyshev, Alexey A1 - Santer, Svetlana A1 - Yakimansky, Alexander A1 - Filippov, Alexander T1 - Self-assembly of molecular brushes with polyimide backbone and amphiphilic block copolymer side chains in selective solvents JF - Polymers N2 - Three-component molecular brushes with a polyimide backbone and amphiphilic block copolymer side chains with different contents of the "inner" hydrophilic (poly(methacrylic acid)) and "outer" hydrophobic (poly(methyl methacrylate)) blocks were synthesized and characterized by molecular hydrodynamics and optics methods in solutions of chloroform, dimethylformamide, tetrahydrofuran and ethanol. The peculiarity of the studied polymers is the amphiphilic structure of the grafted chains. The molar masses of the molecular brushes were determined by static and dynamic light scattering in chloroform in which polymers form molecularly disperse solutions. Spontaneous self-assembly of macromolecules was detected in dimethylformamide, tetrahydrofuran and ethanol. The aggregates size depended on the thermodynamic quality of the solvent as well as on the macromolecular architectural parameters. In dimethylformamide and tetrahydrofuran, the distribution of hydrodynamic radii of aggregates was bimodal, while in ethanol, it was unimodal. Moreover, in ethanol, an increase in the poly(methyl methacrylate) content caused a decrease in the hydrodynamic radius of aggregates. A significant difference in the nature of the blocks included in the brushes determines the selectivity of the used solvents, since their thermodynamic quality with respect to the blocks is different. The macromolecules of the studied graft copolymers tend to self-organization in selective solvents with formation of a core-shell structure with an insoluble solvophobic core surrounded by the solvophilic shell of side chains. KW - molecular brushes KW - amphiphilic side chains KW - molecular hydrodynamics and KW - optics KW - conformational and hydrodynamic characteristics KW - aggregation Y1 - 2020 U6 - https://doi.org/10.3390/polym12122922 SN - 2073-4360 VL - 12 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Tietjen, Britta A1 - Huth, Andreas T1 - Modelling dynamics of managed tropical rainforests - An aggregated approach JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - The overuse of rainforests in the last century and its consequences necessitate a rethinking of logging policies. To this end models have been developed to simulate rainforest dynamics and to allow optional management strategies to be evaluated. Parameterisation of presently existing models for a certain site needs a lot of work, thus the parameterisation effort is too high to apply the models to a wide range of rainforests. Hence, in this paper we introduce the simplified model FORREG using the knowledge we have gained from a more complex model, FORMIX3-Q. The FORREG model uses differential equations to determine the volume growth of three successional species groups. Parameterisation is simplified by a genetic algorithm, which determines the required internal model parameters from characteristics of the forest dynamics. The new model is employed to assess the sustainability of various logging policies in terms of yield and damage. Results for three forests are discussed: (1) the tropical lowland rain forest in the Deramakot Forest Reserve, (2) the Lambir National Park in Malaysia and (3) a subtropical forest in Paraguay. Our model reproduces both undisturbed forest dynamics and dynamics of logged forests simulated with FORMIX3-Q very well. However, the resultant volumes of yield and damage differ slightly from those gained by FORMIX3-Q if short logging cycles are simulated. Choosing longer logging cycles leads to a good correspondence of both models. For the Deramakot Forest Reserve different logging cycles are compared and discussed. (c) 2006 Elsevier B.V. All rights reserved. KW - aggregation KW - differential equation KW - forest model KW - genetic algorithm KW - logging KW - tropical rainforest Y1 - 2006 U6 - https://doi.org/10.1016/j.ecolmodel.2005.11.045 SN - 0304-3800 VL - 199 IS - 4 SP - 421 EP - 432 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schubert, Marcel A1 - Dolfen, Daniel A1 - Frisch, Johannes A1 - Roland, Steffen A1 - Steyrleuthner, Robert A1 - Stiller, Burkhard A1 - Chen, Zhihua A1 - Scherf, Ullrich A1 - Koch, Norbert A1 - Facchetti, Antonio A1 - Neher, Dieter T1 - Influence of aggregation on the performance of All-Polymer Solar Cells containing Low-Bandgap Naphthalenediimide Copolymers JF - dvanced energy materials N2 - The authors present efficient all-polymer solar cells comprising two different low-bandgap naphthalenediimide (NDI)-based copolymers as acceptors and regioregular P3HT as the donor. It is shown that these naphthalene copolymers have a strong tendency to preaggregate in specific organic solvents, and that preaggregation can be completely suppressed when using suitable solvents with large and highly polarizable aromatic cores. Organic solar cells prepared from such nonaggregated polymer solutions show dramatically increased power conversion efficiencies of up to 1.4%, which is mainly due to a large increase of the short circuit current. In addition, optimized solar cells show remarkable high fill factors of up to 70%. The analysis of the blend absorbance spectra reveals a surprising anticorrelation between the degree of polymer aggregation in the solid P3HT:NDI copolymer blends and their photovoltaic performance. Scanning near-field optical microscopy (SNOM) and atomic force microscopy (AFM) measurements reveal important information on the blend morphology. It is shown that films with high degree of aggregation and low photocurrents exhibit large-scale phase-separation into rather pure donor and acceptor domains. It is proposed that, by suppressing the aggregation of NDI copolymers at the early stage of film formation, the intermixing of the donor and acceptor component is improved, thereby allowing efficient harvesting of photogenerated excitons at the donoracceptor heterojunction. KW - aggregation KW - morphology KW - naphthalenediimide KW - organic semiconductors KW - organic photovoltaics Y1 - 2012 U6 - https://doi.org/10.1002/aenm.201100601 SN - 1614-6832 VL - 2 IS - 3 SP - 369 EP - 380 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Drago, Claudia A1 - Pawlak, Julia A1 - Weithoff, Guntram T1 - Biogenic aggregation of small microplastics alters their ingestion by a common freshwater micro-invertebrate JF - Frontiers in Environmental Science N2 - In recent years, increasing concerns have been raised about the environmental risk of microplastics in freshwater ecosystems. Small microplastics enter the water either directly or accumulate through disintegration of larger plastic particles. These particles might then be ingested by filter-feeding zooplankton, such as rotifers. Particles released into the water may also interact with the biota through the formation of aggregates, which might alter the uptake by zooplankton. In this study, we tested for size-specific aggregation of polystyrene microspheres and their ingestion by a common freshwater rotifer Brachionus calyciflorus. The ingestion of three sizes of polystyrene microspheres (MS) 1-, 3-, and 6-mu m was investigated. Each MS size was tested in combination with three different treatments: MS as the sole food intake, MS in association with food algae and MS aggregated with biogenic matter. After 72 h incubation in pre-filtered natural river water, the majority of the 1-mu m spheres occurred as aggregates. The larger the particles, the higher the relative number of single particles and the larger the aggregates. All particles were ingested by the rotifer following a Type-II functional response. The presence of algae did not influence the ingestion of the MS for all three sizes. The biogenic aggregation of microspheres led to a significant size-dependent alteration in their ingestion. Rotifers ingested more microspheres (MS) when exposed to aggregated 1- and 3-mu m MS as compared to single spheres, whereas fewer aggregated 6-mu m spheres were ingested. This indicates that the small particles when aggregated were in an effective size range for Brachionus, while the aggregated larger spheres became too large to be efficiently ingested. These observations provide the first evidence of a size- and aggregation-dependent feeding interaction between microplastics and rotifers. Microplastics when aggregated with biogenic particles in a natural environment can rapidly change their size-dependent availability. The aggregation properties of microplastics should be taken into account when performing experiments mimicking the natural environment. KW - microplastics ingestion KW - Brachionus calyciflorus KW - aggregation KW - microplastics KW - polystyrene KW - functional response Y1 - 2020 U6 - https://doi.org/10.3389/fenvs.2020.574274 SN - 2296-665X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Saffert, Paul A1 - Adamla, Frauke A1 - Schieweck, Rico A1 - Atkins, John F. A1 - Ignatova, Zoya T1 - An Expanded CAG Repeat in Huntingtin Causes+1 Frameshifting JF - The journal of biological chemistry N2 - Maintenance of triplet decoding is crucial for the expression of functional protein because deviations either into the -1 or +1 reading frames are often non-functional. We report here that expression of huntingtin (Htt) exon 1 with expanded CAG repeats, implicated in Huntington pathology, undergoes a sporadic +1 frameshift to generate from the CAG repeat a trans-frame AGC repeat-encoded product. This +1 recoding is exclusively detected in pathological Htt variants, i.e. those with expanded repeats with more than 35 consecutive CAG codons. An atypical +1 shift site, UUC C at the 5 end of CAG repeats, which has some resemblance to the influenza A virus shift site, triggers the +1 frameshifting and is enhanced by the increased propensity of the expanded CAG repeats to form a stem-loop structure. The +1 trans-frame-encoded product can directly influence the aggregation of the parental Htt exon 1. KW - aggregation KW - Huntington disease KW - translation KW - translation regulation KW - trinucleotide repeat disease KW - frameshifting KW - seeding Y1 - 2016 U6 - https://doi.org/10.1074/jbc.M116.744326 SN - 0021-9258 SN - 1083-351X VL - 291 SP - 18505 EP - 18513 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER -