TY - JOUR A1 - Rocha, Marcia R. A1 - Gaedke, Ursula A1 - Vasseur, David A. T1 - Functionally similar species have similar dynamics JF - The journal of ecology N2 - 1. Improving the mechanistic basis of biodiversity-ecosystem function relationships requires a better understanding of how functional traits drive the dynamics of populations. For example, environmental disturbances or grazing may increase synchronization of functionally similar species, whereas functionally different species may show independent dynamics, because of different responses to the environment. Competition for resources, on the other hand, may yield a wide range of dynamic patterns among competitors and lead functionally similar and different species to display synchronized to compensatory dynamics. The mixed effect of these forces will influence the temporal fluctuations of populations and, thus, the variability of aggregate community properties. 2. To search for a relationship between functional and dynamics similarity, we studied the relationship between functional trait similarity and temporal dynamics similarity for 36 morphotypes of phytoplankton using long-term high-frequency measurements. 3. Our results show that functionally similar morphotypes exhibit dynamics that are more synchronized than those of functionally dissimilar ones. Functionally dissimilar morphotypes predominantly display independent temporal dynamics. This pattern is especially strong when short time-scales are considered. 4. Negative correlations are present among both functionally similar and dissimilar phytoplankton morphotypes, but are rarer and weaker than positive ones over all temporal scales. 5. Synthesis. We demonstrate that diversity in functional traits decreases community variability and ecosystem-level properties by decoupling the dynamics of individual morphotypes. KW - compensatory dynamics KW - competition KW - environmental forcing KW - functional diversity KW - functional traits KW - grazing KW - phytoplankton KW - plant population and community dynamics KW - synchrony KW - temporal dynamics Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2745.2011.01893.x SN - 0022-0477 VL - 99 IS - 6 SP - 1453 EP - 1459 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Bauer, Barbara A1 - Vos, Matthijs A1 - Klauschies, Toni A1 - Gaedke, Ursula T1 - Diversity, functional similarity, and top-down control drive synchronization and the reliability of ecosystem function JF - The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences N2 - The concept that diversity promotes reliability of ecosystem function depends on the pattern that community-level biomass shows lower temporal variability than species-level biomasses. However, this pattern is not universal, as it relies on compensatory or independent species dynamics. When in contrast within--trophic level synchronization occurs, variability of community biomass will approach population-level variability. Current knowledge fails to integrate how species richness, functional distance between species, and the relative importance of predation and competition combine to drive synchronization at different trophic levels. Here we clarify these mechanisms. Intense competition promotes compensatory dynamics in prey, but predators may at the same time increasingly synchronize, under increasing species richness and functional similarity. In contrast, predators and prey both show perfect synchronization under strong top-down control, which is promoted by a combination of low functional distance and high net growth potential of predators. Under such conditions, community-level biomass variability peaks, with major negative consequences for reliability of ecosystem function. KW - biodiversity KW - ecosystem services KW - population dynamics KW - predator-prey system KW - species richness KW - synchrony Y1 - 2014 U6 - https://doi.org/10.1086/674906 SN - 0003-0147 SN - 1537-5323 VL - 183 IS - 3 SP - 394 EP - 409 PB - Univ. of Chicago Press CY - Chicago ER -