TY - JOUR A1 - Sperfeld, Erik A1 - Wacker, Alexander T1 - Temperature affects the limitation of Daphnia magna by eicosapentaenoic acid, and the fatty acid composition of body tissue and eggs JF - Freshwater biology N2 - 1. Poikilothermic animals incorporate more polyunsaturated fatty acids (PUFAs) into their cellular membranes as temperature declines, suggesting an increased sensitivity to PUFA limitation in cool conditions. To test this we raised Daphnia magna at different temperatures and investigated the effect of varying dietary PUFA on life history parameters (i.e. growth, reproduction) and the PUFA composition of body tissue and eggs. 2. Upon a PUFA-rich diet (Cryptomonas sp.) females showed higher concentrations of several omega 3 PUFAs in their body tissue at 15 degrees C than at 20 degrees C and 25 degrees C, indicating a greater structural requirement for omega 3 PUFAs at low temperature. Their eggs had an equal but higher concentration of omega 3 PUFAs than their body tissue. 3. In a life history experiment at 15 and 20 degrees C we supplemented a diet of a PUFA-free cyanobacterium with the omega 3 PUFA eicosapentaenoic acid (EPA). The growth of D. magna was more strongly EPA limited at low temperature. A greater requirement for structural EPA at 15 degrees C was indicated by a steeper increase in somatic EPA content with dietary EPA compared to 20 degrees C. 4. At 20 degrees C the development of eggs to successful hatching was high when EPA was supplied to the mothers. At 15 degrees C the hatching success was generally poor, despite of a higher maternal provision of EPA to eggs, compared to that at 20 degrees C, suggesting that EPA alone was insufficient for proper neonatal development at the low temperature. The growth of offspring from mothers raised at 20 degrees C without EPA supplementation was very low, indicating that the negative effects of EPA deficiency can be carried on to the next generation. 5. The fatty acid composition of Daphnia sp. in published field studies shows increasing proportions of saturated fatty acids with increasing environmental temperature, whereas omega 3 PUFAs and EPA show no clear pattern, suggesting that variations in dietary PUFA may mask temperature-dependent adjustments in omega 3 PUFA concentrations of cladocerans in nature. KW - food quality KW - maternal effects KW - polyunsaturated fatty acids KW - resource allocation KW - zooplankton Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2427.2011.02719.x SN - 0046-5070 VL - 57 IS - 3 SP - 497 EP - 508 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Martin-Creuzburg, Dominik A1 - Massier, Tamara A1 - Wacker, Alexander T1 - Sex-Specific differences in essential lipid requirements of Daphnia magna JF - Frontiers in Ecology and Evolution N2 - Sex-specific differences in nutritional requirements may crucially influence the performances of the sexes, which may have implications for sexual reproduction and thus is of great ecological and evolutionary interest. In the freshwater model species Daphnia magna, essential lipid requirements have been extensively studied. Dietary deficiencies in sterols and polyunsaturated fatty acids (PUFA) have been shown to constrain somatic growth and parthenogenetic reproduction of female Daphnia. In contrast, nutrient requirements of male Daphnia have not been studied yet. Supplementation experiments were conducted to investigate differences in sterol (cholesterol) and PUFA (eicosapentaenoic acid, EPA) requirements between female and male D. magna. Thresholds for sterol-limited juvenile growth were higher in females than in males, suggesting that females are more susceptible to dietary sterol deficiencies than males. Sex-specific differences in maximum somatic growth rates were evident primarily in the presence of dietary EPA; females could not exploit their generally higher growth potential in the absence of dietary PUFA. However, the thresholds for EPA-limited growth did not differ between sexes, suggesting that both sexes have similar dietary EPA requirements during juvenile growth. During a life history experiment, the gain in body dry mass was higher in females than in males, irrespective of food treatment. In both sexes, the gain in body dry mass increased significantly upon EPA supplementation, indicating that both sexes benefited from dietary EPA supply also later in life. However, the positive effects of EPA supplementation were most pronounced for female reproduction-related traits (i.e., clutch sizes, egg dry masses, and total dry mass investment in reproduction). The high maternal investment in reproduction resulted in a depletion of nutrients in female somata. In contrast, the comparatively low paternal investment in reproduction allowed for the accumulation of nutrients in male somata. We conclude that males are generally less susceptible to dietary nutrient deficiencies than females, because they can rely more on internal body stores. Our data suggest that the performances of the sexes are differentially influenced by lipid-mediated food quality, which may have consequences for sexual reproduction and thus the production of resting eggs and the maintenance of Daphnia populations. KW - allocation KW - cholesterol KW - eicosapentaenoic acid KW - food quality KW - male Daphnia KW - polyunsaturated fatty acids KW - sterols KW - lipid limitation thresholds Y1 - 2018 U6 - https://doi.org/10.3389/fevo.2018.00089 SN - 2296-701X VL - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Wacker, Alexander A1 - Piepho, Maike A1 - Spijkerman, Elly T1 - Photosynthetic and fatty acid acclimation of four phytoplankton species in response to light intensity and phosphorus availability JF - European journal of phycology N2 - Photosynthetic acclimation of phytoplankton to lower irradiation can be met by several strategies such as increasing the affinity for light or increasing antenna size and stacking of the thylakoids. The latter is reflected by a higher proportion of polyunsaturated fatty acids (PUFAs). Additionally, photosynthetic capacity (P-max), respiratory losses, and proton leakage can be reduced under low light. Here we consider the effect of light intensity and phosphorus availability simultaneously on the photosynthetic acclimation and fatty acid composition of four phytoplankters. We studied representatives of the Chlorophyceae, Cryptophyceae and Mediophyceae, all of which are important components of plankton communities in temperate lakes. In our analysis, excluding fatty acid composition, we found different acclimation strategies in the chlorophytes Scenedesmus quadricauda, Chlamydomonas globosa, cryptophyte Cryptomonas ovata and ochrophyte Cyclotella meneghiniana. We observed interactive effects of light and phosphorus conditions on photosynthetic capacity in S. quadricauda and Cry. ovata. Cry. ovata can be characterized as a low light-acclimated species, whereas S. quadricauda and Cyc. meneghiniana can cope best with a combination of high light intensities and low phosphorus supply. Principal component analyses (PCA), including fatty acid composition, showed further species-specific patterns in their regulation of P-max with PUFAs and light. In S. quadricauda and Cyc. meneghiniana, PUFAs negatively affected the relationship between P-max and light. In Chl. globosa, lower light coincided with higher PUFAs and lower P-max, but PCA also indicated that PUFAs had no direct influence on P-max. PUFAs and P-max were unaffected by light in Cry. ovata. We did not observe a general trend in the four species tested and concluded that, in particular, the interactive effects highlight the importance of taking into account more than one environmental factor when assessing photosynthetic acclimation to lower irradiation. KW - chlorophyll content KW - dark respiration KW - FAME KW - light acclimation KW - oxygen evolution KW - photosynthesis KW - phytoplankton KW - polyunsaturated fatty acids Y1 - 2015 U6 - https://doi.org/10.1080/09670262.2015.1050068 SN - 0967-0262 SN - 1469-4433 VL - 50 IS - 3 SP - 288 EP - 300 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Denoux, Clemence A1 - Martin-Creuzburg, Dominik A1 - Koussoroplis, Apostolos-Manuel A1 - Perriere, Fanny A1 - Desvillettes, Christian A1 - Bourdier, Gilles A1 - Bec, Alexandre T1 - Phospholipid-bound eicosapentaenoic acid (EPA) supports higher fecundity than free EPA in Daphnia magna JF - Journal of plankton research N2 - Nutrition bioassays in which polyunsaturated fatty acids (PUFA)-deficient diets were supplemented with free long-chain PUFA (>= C20) consistently revealed positive effects on somatic growth and fecundity of Daphnia. However, free PUFA are hardly available in natural diets. In general, PUFA are bound to other lipids, especially to phospholipids and triglycerides. Here, we evaluate the potential of free and phospholipid-bound dietary eicosapentaenoic acid (EPA) to support somatic growth and fecundity of Daphnia magna. In a growth experiment, supplementation of a C20 PUFA-deficient diet with free or phospholipid-bound EPA improved somatic growth rates of D. magna equally. However, the increase in fecundity was significantly more pronounced when phospholipid-bound EPA was provided. Free and phospholipid-bound EPA were provided in the same concentrations in our experiment, suggesting that the allocation to reproduction-related processes is affected differently by phospholipid-bound PUFA and free PUFA. Our finding stresses the need to consider the distribution of dietary PUFA in different lipid classes to gain a better understanding of how PUFA influence life history traits of Daphnids in the field. KW - Daphnia magna KW - food quality KW - phospholipids KW - polyunsaturated fatty acids KW - reproduction KW - somatic growth KW - trophic interactions Y1 - 2017 U6 - https://doi.org/10.1093/plankt/fbx037 SN - 0142-7873 SN - 1464-3774 VL - 39 SP - 843 EP - 848 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Wacker, Alexander A1 - Marzetz, Vanessa A1 - Spijkerman, Elly T1 - Interspecific competition in phytoplankton drives the availability of essential mineral and biochemical nutrients JF - Ecology : a publication of the Ecological Society of America N2 - The underlying mechanisms and consequences of competition and diversity are central themes in ecology. A higher diversity of primary producers often results in higher resource use efficiency in aquatic and terrestrial ecosystems. This may result in more food for consumers on one hand, while, on the other hand, it can also result in a decreased food quality for consumers; higher biomass combined with the same availability of the limiting compound directly reduces the dietary proportion of the limiting compound. Here we tested whether and how interspecific competition in phytoplankton communities leads to changes in resource use efficiency and cellular concentrations of nutrients and fatty acids. The measured particulate carbon : phosphorus ratios (C:P) and fatty acid concentrations in the communities were compared to the theoretically expected ratios and concentrations of measurements on simultaneously running monocultures. With interspecific competition, phytoplankton communities had higher concentrations of the monounsaturated fatty acid oleic acid and also much higher concentrations of the ecologically and physiologically relevant long-chain polyunsaturated fatty acid eicosapentaenoic acid than expected concentrations based on monocultures. Such higher availability of essential fatty acids may contribute to the positive relationship between phytoplankton diversity and zooplankton growth, and may compensate limitations by mineral nutrients in higher trophic levels. KW - biodiversity KW - C:P ratio KW - competition KW - eicosapentaenoic acid KW - elemental composition KW - EPA KW - food quality KW - minerals KW - phosphorus KW - polyunsaturated fatty acids KW - PUFA KW - resource use efficiency Y1 - 2015 U6 - https://doi.org/10.1890/14-1915.1 SN - 0012-9658 SN - 1939-9170 VL - 96 IS - 9 SP - 2467 EP - 2477 PB - Wiley CY - Washington ER - TY - JOUR A1 - Wang, Chaoxuan A1 - Enssle, Jörg A1 - Pietzner, Anne A1 - Schmöcker, Christoph A1 - Weiland, Linda A1 - Ritter, Oliver A1 - Jaensch, Monique A1 - Elbelt, Ulf A1 - Pagonas, Nikolaos A1 - Weylandt, Karsten-Henrich T1 - Essential polyunsaturated fatty acids in blood from patients with and without catheter-proven coronary artery disease JF - International journal of molecular sciences N2 - Coronary artery disease (CAD) is the leading cause of death worldwide. Statins reduce morbidity and mortality of CAD. Intake of n-3 polyunsaturated fatty acid (n-3 PUFAs), particularly eicosapentaenoic acid (EPA), is associated with reduced morbidity and mortality in patients with CAD. Previous data indicate that a higher conversion of precursor fatty acids (FAs) to arachidonic acid (AA) is associated with increased CAD prevalence. Our study explored the FA composition in blood to assess n-3 PUFA levels from patients with and without CAD. We analyzed blood samples from 273 patients undergoing cardiac catheterization. Patients were stratified according to clinically relevant CAD (n = 192) and those without (n = 81). FA analysis in full blood was performed by gas chromatography. Indicating increased formation of AA from precursors, the ratio of dihomo-gamma-linolenic acid (DGLA) to AA, the delta-5 desaturase index (D5D index) was higher in CAD patients. CAD patients had significantly lower levels of omega-6 polyunsaturated FAs (n-6 PUFA) and n-3 PUFA, particularly EPA, in the blood. Thus, our study supports a role of increased EPA levels for cardioprotection. KW - coronary artery disease KW - triglycerides KW - polyunsaturated fatty acids KW - n-3 PUFA KW - statins KW - arachidonic acid Y1 - 2022 U6 - https://doi.org/10.3390/ijms23020766 SN - 1422-0067 SN - 1661-6596 VL - 23 IS - 2 PB - Molecular Diversity Preservation International CY - Basel ER -