TY - JOUR A1 - Zhang, Yunming A1 - Ramming, Anna A1 - Heinke, Lisa A1 - Altschmied, Lothar A1 - Slotkin, R. Keith A1 - Becker, Jörg D. A1 - Kappel, Christian A1 - Lenhard, Michael T1 - The poly(A) polymerase PAPS1 interacts with the RNA-directed DNA-methylation pathway in sporophyte and pollen development JF - The plant journal N2 - RNA-based processes play key roles in the regulation of eukaryotic gene expression. This includes both the processing of pre-mRNAs into mature mRNAs ready for translation and RNA-based silencing processes, such as RNA-directed DNA methylation (RdDM). Polyadenylation of pre-mRNAs is one important step in their processing and is carried out by three functionally specialized canonical nuclear poly(A) polymerases in Arabidopsis thaliana. Null mutations in one of these, termed PAPS1, result in a male gametophytic defect. Using a fluorescence-labelling strategy, we have characterized this defect in more detail using RNA and small-RNA sequencing. In addition to global defects in the expression of pollen-differentiation genes, paps1 null-mutant pollen shows a strong overaccumulation of transposable element (TE) transcripts, yet a depletion of 21- and particularly 24-nucleotide-long short interfering RNAs (siRNAs) and microRNAs (miRNAs) targeting the corresponding TEs. Double-mutant analyses support a specific functional interaction between PAPS1 and components of the RdDM pathway, as evident from strong synergistic phenotypes in mutant combinations involving paps1, but not paps2 paps4, mutations. In particular, the double-mutant of paps1 and rna-dependent rna polymerase 6 (rdr6) shows a synergistic developmental phenotype disrupting the formation of the transmitting tract in the female gynoecium. Thus, our findings in A. thaliana uncover a potentially general link between canonical poly(A) polymerases as components of mRNA processing and RdDM, reflecting an analogous interaction in fission yeast. KW - poly(A) polymerase KW - RNA-directed DNA methylation KW - pollen development KW - siRNAs KW - transposable elements KW - gynoecium development KW - Arabidopsis thaliana Y1 - 2019 U6 - https://doi.org/10.1111/tpj.14348 SN - 0960-7412 SN - 1365-313X VL - 99 IS - 4 SP - 655 EP - 672 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Trost, Gerda A1 - Vi, Son Lang A1 - Czesnick, Hjördis A1 - Lange, Peggy A1 - Holton, Nick A1 - Giavalisco, Patrick A1 - Zipfel, Cyril A1 - Kappel, Christian A1 - Lenhard, Michael T1 - Arabidopsis poly(A) polymerase PAPS1 limits founder-cell recruitment to organ primordia and suppresses the salicylic acid-independent immune response downstream of EDS1/PAD4 JF - The plant journal N2 - Polyadenylation of pre-mRNAs by poly(A) polymerase (PAPS) is a critical process in eukaryotic gene expression. As found in vertebrates, plant genomes encode several isoforms of canonical nuclear PAPS enzymes. In Arabidopsis thaliana these isoforms are functionally specialized, with PAPS1 affecting both organ growth and immune response, at least in part by the preferential polyadenylation of subsets of pre-mRNAs. Here, we demonstrate that the opposite effects of PAPS1 on leaf and flower growth reflect the different identities of these organs, and identify a role for PAPS1 in the elusive connection between organ identity and growth patterns. The overgrowth of paps1 mutant petals is due to increased recruitment of founder cells into early organ primordia, and suggests that PAPS1 activity plays unique roles in influencing organ growth. By contrast, the leaf phenotype of paps1 mutants is dominated by a constitutive immune response that leads to increased resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis and reflects activation of the salicylic acid-independent signalling pathway downstream of ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)/PHYTOALEXIN DEFICIENT4 (PAD4). These findings provide an insight into the developmental and physiological basis of the functional specialization amongst plant PAPS isoforms. KW - poly(A) polymerase KW - founder-cell recruitment KW - organ growth KW - polyadenylation Y1 - 2014 U6 - https://doi.org/10.1111/tpj.12421 SN - 0960-7412 SN - 1365-313X VL - 77 IS - 5 SP - 688 EP - 699 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Czesnick, Hjördis A1 - Lenhard, Michael T1 - Antagonistic control of flowering time by functionally specialized poly(A) polymerases in Arabidopsis thaliana JF - The plant journal N2 - Polyadenylation is a critical 3-end processing step during maturation of pre-mRNAs, and the length of the poly(A) tail affects mRNA stability, nuclear export and translation efficiency. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerase (PAPS) isoforms fulfilling specialized functions, as reflected by their different mutant phenotypes. While PAPS1 affects several processes, such as the immune response, organ growth and male gametophyte development, the roles of PAPS2 and PAPS4 are largely unknown. Here we demonstrate that PAPS2 and PAPS4 promote flowering in a partially redundant manner. The enzymes act antagonistically to PAPS1, which delays the transition to flowering. The opposite flowering-time phenotypes in paps1 and paps2 paps4 mutants are at least partly due to decreased or increased FLC activity, respectively. In contrast to paps2 paps4 mutants, plants with increased PAPS4 activity flower earlier than the wild-type, concomitant with reduced FLC expression. Double mutant analyses suggest that PAPS2 and PAPS4 act independently of the autonomous pathway components FCA, FY and CstF64. The direct polyadenylation targets of the three PAPS isoforms that mediate their effects on flowering time do not include FLC sense mRNA and remain to be identified. Thus, our results uncover a role for canonical PAPS isoforms in flowering-time control, raising the possibility that modulating the balance of the isoform activities could be used to fine tune the transition to flowering. Significance Statement The length of the poly(A) tail affects mRNA stability, nuclear export and translation efficiency. Arabidopsis has three isoforms of nuclear poly(A) polymerase (PAPS): PAPS1 plays a major role in organ growth and plant defence. Here we show that PAPS2 and PAPS4 redundantly promote flowering and act antagonistically to PAPS1, which delays flowering. We suggest that modulating the activity of these isoforms fine-tunes the transition to flowering. KW - polyadenylation KW - 3-end processing KW - poly(A) polymerase KW - flowering time KW - autonomous pathway KW - Arabidopsis thaliana Y1 - 2016 U6 - https://doi.org/10.1111/tpj.13280 SN - 0960-7412 SN - 1365-313X VL - 88 SP - 570 EP - 583 PB - Wiley-Blackwell CY - Hoboken ER -