TY - JOUR A1 - Fischer, Martin H. T1 - Why Numbers Are Embodied Concepts JF - Frontiers in Psychology KW - arithmetic KW - numerical cognition KW - number concepts KW - embodied cognition KW - philosophy of science Y1 - 2018 U6 - https://doi.org/10.3389/fpsyg.2017.02347 SN - 1664-1078 VL - 8 SP - 1 EP - 3 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Miklashevsky, Alex A1 - Lindemann, Oliver A1 - Fischer, Martin H. T1 - The force of numbers BT - Investigating manual signatures of embodied number processing JF - Frontiers in human neuroscience / Frontiers Research Foundation N2 - The study has two objectives: (1) to introduce grip force recording as a new technique for studying embodied numerical processing; and (2) to demonstrate how three competing accounts of numerical magnitude representation can be tested by using this new technique: the Mental Number Line (MNL), A Theory of Magnitude (ATOM) and Embodied Cognition (finger counting-based) account. While 26 healthy adults processed visually presented single digits in a go/no-go n-back paradigm, their passive holding forces for two small sensors were recorded in both hands. Spontaneous and unconscious grip force changes related to number magnitude occurred in the left hand already 100-140 ms after stimulus presentation and continued systematically. Our results support a two-step model of number processing where an initial stage is related to the automatic activation of all stimulus properties whereas a later stage consists of deeper conscious processing of the stimulus. This interpretation generalizes previous work with linguistic stimuli and elaborates the timeline of embodied cognition. We hope that the use of grip force recording will advance the field of numerical cognition research. KW - ATOM KW - embodied cognition KW - finger counting KW - grip force KW - mental number KW - line KW - number processing KW - numerical cognition Y1 - 2021 U6 - https://doi.org/10.3389/fnhum.2020.590508 SN - 1662-5161 VL - 14 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Fischer, Martin H. A1 - Shaki, Samuel T1 - Repeating Numbers Reduces Results: Violations of the Identity Axiom in Mental Arithmetic JF - Frontiers in psychology N2 - Even simple mental arithmetic is fraught with cognitive biases. For example, adding repeated numbers (so-called tie problems, e.g., 2 + 2) not only has a speed and accuracy advantage over adding different numbers (e.g., 1 + 3) but may also lead to under-representation of the result relative to a standard value (Charras et al., 2012, 2014). Does the tie advantage merely reflect easier encoding or retrieval compared to non-ties, or also a distorted result representation? To answer this question, 47 healthy adults performed two tasks, both of which indicated under-representation of tie results: In a result-to-position pointing task (Experiment 1) we measured the spatial mapping of numbers and found a left-bias for tie compared to non-tie problems. In a result-to-line-length production task (Experiment 2) we measured the underlying magnitude representation directly and obtained shorter lines for tie-compared to non-tie problems. These observations suggest that the processing benefit of tie problems comes at the cost of representational reduction of result meaning. This conclusion is discussed in the context of a recent model of arithmetic heuristics and biases. KW - AHAB KW - cognitive bias KW - mental arithmetic KW - numerical cognition KW - operational momentum KW - SNARC KW - tie problems Y1 - 2018 U6 - https://doi.org/10.3389/fpsyg.2018.02453 SN - 1664-1078 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Fischer, Martin H. A1 - Hartmann, Matthias T1 - Pushing forward in embodied cognition: may we mouse the mathematical mind? JF - Frontiers in psychology N2 - Freely available software has popularized "mousetracking" to study cognitive processing; this involves the on-line recording of cursor positions while participants move a computer mouse to indicate their choice. Movement trajectories of the cursor can then be reconstructed off-line to assess the efficiency of responding in time and across space. Here we focus on the process of selecting among alternative numerical responses. Several studies have recently measured the mathematical mind with cursor movements while people decided about number magnitude or parity, computed sums or differences, or simply located numbers on a number line. After some general methodological considerations about mouse tracking we discuss several conceptual concerns that become particularly evident when "mousing" the mathematical mind. KW - mousetracking KW - numerical cognition KW - SNARC effect KW - trajectories KW - on-line processing Y1 - 2014 U6 - https://doi.org/10.3389/fpsyg.2014.01315 SN - 1664-1078 VL - 5 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Wiemers, Michael A1 - Bekkering, Harold A1 - Lindemann, Oliver T1 - Is more always up? BT - evidence for a preference of hand-based associations over vertical number mappings JF - Journal of cognitive psychology N2 - It has been argued that the association of numbers and vertical space plays a fundamental role for the understanding of numerical concepts. However, convincing evidence for an association of numbers and vertical bimanual responses is still lacking. The present study tests the vertical Spatio-Numerical-Association-of-Response-Codes (SNARC) effect in a number classification task by comparing anatomical hand-based and spatial associations. A mixed effects model of linear spatial-numerical associations revealed no evidence for a vertical but clear support for an anatomical SNARC effect. Only if the task requirements prevented participants from using a number-hand association due to frequently alternating hand-to-button assignments, numbers were associated with the vertical dimension. Taken together, the present findings question the importance of vertical associations for the conceptual understanding of numerical magnitude as hypothesised by some embodied approaches to number cognition and suggest a preference for ego-over geocentric reference frames for the mapping of numbers onto space. KW - SNARC effect KW - embodied numerosity KW - numerical cognition Y1 - 2017 U6 - https://doi.org/10.1080/20445911.2017.1302451 SN - 2044-5911 SN - 2044-592X VL - 29 IS - 5 SP - 642 EP - 652 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Shaki, Samuel A1 - Fischer, Martin H. T1 - Competing Biases in Mental Arithmetic BT - When Division Is More and Multiplication Is Less JF - Frontiers in human neuroscience N2 - Mental arithmetic exhibits various biases. Among those is a tendency to overestimate addition and to underestimate subtraction outcomes. Does such “operational momentum” (OM) also affect multiplication and division? Twenty-six adults produced lines whose lengths corresponded to the correct outcomes of multiplication and division problems shown in symbolic format. We found a reliable tendency to over-estimate division outcomes, i.e., reverse OM. We suggest that anchoring on the first operand (a tendency to use this number as a reference for further quantitative reasoning) contributes to cognitive biases in mental arithmetic. KW - heuristics and biases KW - numerical cognition KW - mental arithmetic KW - mental number line KW - operational momentum Y1 - 2017 U6 - https://doi.org/10.3389/fnhum.2017.00037 SN - 1662-5161 VL - 11 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Fischer, Martin H. A1 - Miklashevsky, Alex A. A1 - Shaki, Samuel T1 - Commentary : The Developmental Trajectory of the Operational Momentum Effect JF - Frontiers in Psychology KW - embodied cognition KW - operational momentum KW - SNARC effect KW - mental arithmetic KW - numerical cognition Y1 - 2018 U6 - https://doi.org/10.3389/fpsyg.2018.02259 SN - 1664-1078 N1 - A Commentary on The Developmental Trajectory of the Operational Momentum Effect by Pinheiro-Chagas, P., Didino, D., Haase, V. G., Wood, G., and Knops, A. (2018). Front. Psychol. 9:1062 doi: 10.3389/fpsyg.2018.01062 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Felisatti, Arianna A1 - Laubrock, Jochen A1 - Shaki, Samuel A1 - Fischer, Martin H. T1 - A biological foundation for spatial–numerical associations BT - the brain's asymmetric frequency tuning JF - Annals of the New York Academy of Sciences N2 - "Left" and "right" coordinates control our spatial behavior and even influence abstract thoughts. For number concepts, horizontal spatial-numerical associations (SNAs) have been widely documented: we associate few with left and many with right. Importantly, increments are universally coded on the right side even in preverbal humans and nonhuman animals, thus questioning the fundamental role of directional cultural habits, such as reading or finger counting. Here, we propose a biological, nonnumerical mechanism for the origin of SNAs on the basis of asymmetric tuning of animal brains for different spatial frequencies (SFs). The resulting selective visual processing predicts both universal SNAs and their context-dependence. We support our proposal by analyzing the stimuli used to document SNAs in newborns for their SF content. As predicted, the SFs contained in visual patterns with few versus many elements preferentially engage right versus left brain hemispheres, respectively, thus predicting left-versus rightward behavioral biases. Our "brain's asymmetric frequency tuning" hypothesis explains the perceptual origin of horizontal SNAs for nonsymbolic visual numerosities and might be extensible to the auditory domain. KW - hemispheric asymmetry KW - numerical cognition KW - SNARC effect KW - spatial KW - frequency tuning KW - spatial-numerical associations KW - spatial vision Y1 - 2020 U6 - https://doi.org/10.1111/nyas.14418 SN - 0077-8923 SN - 1749-6632 VL - 1477 IS - 1 SP - 44 EP - 53 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Belli, Francesco A1 - Felisatti, Arianna A1 - Fischer, Martin H. T1 - "BreaThink" BT - breathing affects production and perception of quantities JF - Experimental brain research N2 - Cognition is shaped by signals from outside and within the body. Following recent evidence of interoceptive signals modulating higher-level cognition, we examined whether breathing changes the production and perception of quantities. In Experiment 1, 22 adults verbally produced on average larger random numbers after inhaling than after exhaling. In Experiment 2, 24 further adults estimated the numerosity of dot patterns that were briefly shown after either inhaling or exhaling. Again, we obtained on average larger responses following inhalation than exhalation. These converging results extend models of situated cognition according to which higher-level cognition is sensitive to transient interoceptive states. KW - breathing KW - embodied cognition KW - interoception KW - numerical cognition KW - situated cognition Y1 - 2021 U6 - https://doi.org/10.1007/s00221-021-06147-z SN - 0014-4819 SN - 1432-1106 VL - 239 IS - 8 SP - 2489 EP - 2499 PB - Springer CY - New York ER -