TY - JOUR A1 - Xu, Jingsan A1 - Brenner, Thomas J. K. A1 - Chen, Zupeng A1 - Neher, Dieter A1 - Antonietti, Markus A1 - Shalom, Menny T1 - Upconversion-agent induced improvement of g-C3N4 photocatalyst under visible light JF - ACS applied materials & interfaces N2 - Herein, we report the use of upconversion agents to modify graphite carbon nitride (g-C3N4) by direct thermal condensation of a mixture of ErCl3 center dot 6H(2)O and the supramolecular precursor cyanuric acid-melamine. We show the enhancement of g-C3N4 photoactivity after Er3+ doping by monitoring the photodegradation of Rhodamine B dye under visible light. The contribution of the upconversion agent is demonstrated by measurements using only a red laser. The Er3+ doping alters both the electronic and the chemical properties of g-C3N4. The Er3+ doping reduces emission intensity and lifetime, indicating the formation of new, nonradiative deactivation pathways, probably involving charge-transfer processes. KW - metal-free photocatalysis KW - upconversion KW - carbon nitride KW - RhB photodegradation Y1 - 2014 U6 - https://doi.org/10.1021/am5051263 SN - 1944-8244 VL - 6 IS - 19 SP - 16481 EP - 16486 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Chen, Lu A1 - Yan, Runyu A1 - Oschatz, Martin A1 - Jiang, Lei A1 - Antonietti, Markus A1 - Xiao, Kai T1 - Ultrathin 2D graphitic carbon nitride on metal films BT - underpotential sodium deposition in adlayers for sodium-ion batteries JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Efficient and low-cost anode materials for the sodium-ion battery are highly desired to enable more economic energy storage. Effects on an ultrathin carbon nitride film deposited on a copper metal electrode are presented. The combination of effects show an unusually high capacity to store sodium metal. The g-C3N4 film is as thin as 10 nm and can be fabricated by an efficient, facile, and general chemical-vapor deposition method. A high reversible capacity of formally up to 51 Ah g(-1) indicates that the Na is not only stored in the carbon nitride as such, but that carbon nitride activates also the metal for reversible Na-deposition, while forming at the same time an solid electrolyte interface layer avoiding direct contact of the metallic phase with the liquid electrolyte. KW - 2D films KW - carbon nitride KW - chemical vapor deposition KW - sodium-ion KW - batteries KW - underpotential deposition Y1 - 2020 U6 - https://doi.org/10.1002/anie.202000314 SN - 1433-7851 SN - 1521-3773 VL - 59 IS - 23 SP - 9067 EP - 9073 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Chen, Zupeng A1 - Savateev, Aleksandr A1 - Pronkin, Sergey A1 - Papaefthimiou, Vasiliki A1 - Wolff, Christian Michael A1 - Willinger, Marc Georg A1 - Willinger, Elena A1 - Neher, Dieter A1 - Antonietti, Markus A1 - Dontsova, Dariya T1 - "The Easier the Better" Preparation of Efficient Photocatalysts-Metastable Poly(heptazine imide) Salts JF - Advanced materials N2 - Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photo-catalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger. KW - carbon nitride KW - glycerol oxidation KW - mesocrystals KW - poly(heptazine imide) KW - water reduction reactions Y1 - 2017 U6 - https://doi.org/10.1002/adma.201700555 SN - 0935-9648 SN - 1521-4095 VL - 29 SP - 21800 EP - 21806 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Jordan, Thomas A1 - Fechler, Nina A1 - Xu, Jingsan A1 - Brenner, Thomas J. K. A1 - Antonietti, Markus A1 - Shalom, Menny T1 - "Caffeine Doping" of Carbon/Nitrogen-Based Organic Catalysts: Caffeine as a Supramolecular Edge Modifier for the Synthesis of Photoactive Carbon Nitride Tubes JF - ChemCatChem : heterogeneous & homogeneous & bio- & nano-catalysis ; a journal of ChemPubSoc Europe N2 - An alternative method for the structure tuning of carbon nitride materials by using a supramolecular approach in combination with caffeine as lining-agent is described. The self-assembly of the precursor complex consisting of melamine and cyanuric acid can be controlled by this doping molecule in terms of morphology, electronic, and photophysical properties. Caffeine is proposed to insert as an edge-molecule eventually leading to hollow tube-like carbon nitride structures with improved efficiency of charge formation. Compared to the bulk carbon nitride, the caffeine-doped analogue possesses a higher photocatalytic activity for the degradation of rhodamineB dye. Furthermore, this approach is also shown to be suitable for the modification of carbon nitride electrodes. KW - caffeine KW - carbon nitride KW - films KW - photocatalysis KW - supramolecular chemistry Y1 - 2015 U6 - https://doi.org/10.1002/cctc.201500343 SN - 1867-3880 SN - 1867-3899 VL - 7 IS - 18 SP - 2826 EP - 2830 PB - Wiley-VCH CY - Weinheim ER -