TY - JOUR A1 - Mitrova, Biljana A1 - Tadjoung Waffo, Armel Franklin A1 - Kaufmann, Paul A1 - Iobbi-Nivol, Chantal A1 - Leimkühler, Silke A1 - Wollenberger, Ulla T1 - Trimethylamine N-Oxide Electrochemical Biosensor with a Chimeric Enzyme JF - ChemElectroChem N2 - For the first time, an enzyme-based electrochemical biosensor system for determination of trimethylamine N-oxide (TMAO) is described. It employs an active chimeric variant of TorA in combination with an enzymatically deoxygenating system and a low-potential mediator for effective regeneration of the enzyme and cathodic current generation. TMAO reductase (TorA) is a molybdoenzyme found in marine and most enterobacteria that specifically catalyzes the reduction of TMAO to trimethylamine (TMA). The chimeric TorA, named TorA-FDH, corresponds to the apoform of TorA from Escherichia coli reconstituted with the molybdenum cofactor from formate dehydrogenase (FDH). Each enzyme, TorA and TorA-FDH, was immobilized on the surface of a carbon electrode and protected with a dialysis membrane. The biosensor operates at an applied potential of -0.8V [vs. Ag/AgCl (1M KCl)] under ambient air conditions thanks to an additional enzymatic O-2-scavenger system. A comparison between the two enzymatic sensors revealed a much higher sensitivity for the biosensor with immobilized TorA-FDH. This biosensor exhibits a sensitivity of 14.16nA/M TMAO in a useful measuring range of 2-110M with a detection limit of LOD=2.96nM (S/N=3), and was similar for TMAO in buffer and in spiked serum samples. With a response time of 16 +/- 2 s, the biosensor is stable over prolonged daily measurements (n=20). This electrochemical biosensor provides suitable applications in detecting TMAO levels in human serum. KW - trimethylamine N-oxide (TMAO) KW - TMAO reductase KW - chimeric enzyme KW - molybdoenzyme KW - electrochemical biosensor Y1 - 2018 U6 - https://doi.org/10.1002/celc.201801422 SN - 2196-0216 VL - 6 IS - 6 SP - 1732 EP - 1737 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Tiedemann, Kim A1 - Iobbi-Nivol, Chantal A1 - Leimkühler, Silke T1 - The Role of the Nucleotides in the Insertion of the bis-Molybdopterin Guanine Dinucleotide Cofactor into apo-Molybdoenzymes JF - Molecules N2 - The role of the GMP nucleotides of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor of the DMSO reductase family has long been a subject of discussion. The recent characterization of the bis-molybdopterin (bis-Mo-MPT) cofactor present in the E. coli YdhV protein, which differs from bis-MGD solely by the absence of the nucleotides, now enables studying the role of the nucleotides of bis-MGD and bis-MPT cofactors in Moco insertion and the activity of molybdoenzymes in direct comparison. Using the well-known E. coli TMAO reductase TorA as a model enzyme for cofactor insertion, we were able to show that the GMP nucleotides of bis-MGD are crucial for the insertion of the bis-MGD cofactor into apo-TorA. KW - bis-MGD KW - chaperone KW - molybdenum cofactor KW - TMAO reductase Y1 - 2022 U6 - https://doi.org/10.3390/molecules27092993 SN - 1420-3049 VL - 27 SP - 1 EP - 15 PB - MDPI CY - Basel, Schweiz ET - 9 ER -