TY - JOUR A1 - Laflamme, Simon A1 - Kollosche, Matthias A1 - Connor, Jerome J. A1 - Kofod, Guggi T1 - Robust flexible capacitive surface sensor for structural health monitoring applications JF - Journal of engineering mechanics N2 - Early detection of possible defects in civil infrastructure is vital to ensuring timely maintenance and extending structure life expectancy. The authors recently proposed a novel method for structural health monitoring based on soft capacitors. The sensor consisted of an off-the-shelf flexible capacitor that could be easily deployed over large surfaces, the main advantages being cost-effectiveness, easy installation, and allowing simple signal processing. In this paper, a capacitive sensor with tailored mechanical and electrical properties is presented, resulting in greatly improved robustness while retaining measurement sensitivity. The sensor is fabricated from a thermoplastic elastomer mixed with titanium dioxide and sandwiched between conductive composite electrodes. Experimental verifications conducted on wood and concrete specimens demonstrate the improved robustness, as well as the ability of the sensing method to diagnose and locate strain. KW - Strain gages KW - Structural health monitoring KW - Monitoring KW - Probe instruments KW - Strain gauge KW - Structural health monitoring KW - Strain monitoring KW - Capacitive sensor KW - Dielectric polymer KW - Stretchable sensor KW - Flexible membrane KW - Sensing skin Y1 - 2013 U6 - https://doi.org/10.1061/(ASCE)EM.1943-7889.0000530 SN - 0733-9399 SN - 1943-7889 VL - 139 IS - 7 SP - 879 EP - 885 PB - American Society of Civil Engineers CY - Reston ER - TY - JOUR A1 - Pilz, Marco A1 - Isken, Marius Paul A1 - Fleming, Kevin A1 - Orunbaev, Sagynbek A1 - Moldobekov, Bolot T1 - Long- and short-term monitoring of a dam in response to seasonal changes and ground motion loading BT - the test case of the Kurpsai Dam, Western Kyrgyz Republic JF - Pure and applied geophysics : PAGEOPH ; continuation of Geofisica pura e applicata N2 - An experimental multi-parameter structural monitoring system has been installed on the Kurpsai dam, western Kyrgyz Republic. This system consists of equipment for seismic and strain measurements for making longer- (days, weeks, months) and shorter- (minutes, hours) term observations, dealing with, for example seasonal (longer) effects or the response of the dam to ground motion from noise or seismic events. Fibre-optic strain sensors allow the seasonal and daily opening and closing of the spaces between the dam's segments to be tracked. For the seismic data, both amplitude (in terms of using differences in amplitudes in the Fourier spectra for mapping the modes of vibration of the dam) and their time-frequency distribution for a set of small to moderate seismic events are investigated and the corresponding phase variabilities (in terms of lagged coherency) are evaluated. Even for moderate levels of seismic-induced ground motion, some influence on the structural response can be detected, which then sees the dam quickly return to its original state. A seasonal component was identified in the strain measurements, while levels of noise arising from the operation of the dam's generators and associated water flow have been provisionally identified. KW - Structural health monitoring KW - Dam engineering KW - Operational and environmental effects KW - Strong-motion KW - Strain KW - Elastic response KW - Kurpsai dam Y1 - 2021 U6 - https://doi.org/10.1007/s00024-021-02861-5 SN - 0033-4553 SN - 1420-9136 VL - 178 IS - 10 SP - 4001 EP - 4020 PB - Birkhäuser CY - Basel ER -