TY - JOUR A1 - Bürger, Gerd A1 - Pfister, A. A1 - Bronstert, Axel T1 - Temperature-Driven Rise in Extreme Sub-Hourly Rainfall JF - Journal of climate N2 - Estimates of present and future extreme sub-hourly rainfall are derived from a daily spatial followed by a sub-daily temporal downscaling, the latter of which incorporates a novel, and crucial, temperature sensitivity. Specifically, daily global climate fields are spatially downscaled to local temperature T and precipitation P, which are then disaggregated to a temporal resolution of 10 min using a multiplicative random cascade model. The scheme is calibrated and validated with a group of 21 station records of 10-min resolution in Germany. The cascade model is used in the classical (denoted as MC) and in the new T-sensitive (MC+) version, which respects local Clausius-Clapeyron (CC) effects such as CC scaling. Extreme P is positively biased in both MC versions. Observed T sensitivity is absent in MC but well reproduced by MC+. Long-term positive trends in extreme sub-hourly P are generally more pronounced and more significant in MC+ than in MC. In units of 10-min rainfall, observed centennial trends in annual exceedance counts (EC) of P > 5 mm are +29% and in 3-yr return levels (RL) +27%. For the RCP4.5-simulated future, higher extremes are projected in both versions MC and MC+: per century, EC increases by 30% for MC and by 83% for MC+; the RL rises by 14% for MC and by 33% for MC+. Because the projected daily P trends are negligible, the sub-daily signal is mainly driven by local temperature. KW - Extreme events KW - Rainfall KW - Climate change KW - Statistical techniques KW - Time series KW - Stochastic models Y1 - 2019 U6 - https://doi.org/10.1175/JCLI-D-19-0136.1 SN - 0894-8755 SN - 1520-0442 VL - 32 IS - 22 SP - 7597 EP - 7609 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Rheinwalt, Aljoscha A1 - Boers, Niklas A1 - Marwan, Norbert A1 - Kurths, Jürgen A1 - Hoffmann, Peter A1 - Gerstengarbe, Friedrich-Wilhelm A1 - Werner, Peter T1 - Non-linear time series analysis of precipitation events using regional climate networks for Germany JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - Synchronous occurrences of heavy rainfall events and the study of their relation in time and space are of large socio-economical relevance, for instance for the agricultural and insurance sectors, but also for the general well-being of the population. In this study, the spatial synchronization structure is analyzed as a regional climate network constructed from precipitation event series. The similarity between event series is determined by the number of synchronous occurrences. We propose a novel standardization of this number that results in synchronization scores which are not biased by the number of events in the respective time series. Additionally, we introduce a new version of the network measure directionality that measures the spatial directionality of weighted links by also taking account of the effects of the spatial embedding of the network. This measure provides an estimate of heavy precipitation isochrones by pointing out directions along which rainfall events synchronize. We propose a climatological interpretation of this measure in terms of propagating fronts or event traces and confirm it for Germany by comparing our results to known atmospheric circulation patterns. KW - Rainfall KW - Complex networks KW - Precipitation events KW - Anisotropy KW - Dominant link directions KW - Isochrones KW - Event synchronization Y1 - 2016 U6 - https://doi.org/10.1007/s00382-015-2632-z SN - 0930-7575 SN - 1432-0894 VL - 46 SP - 1065 EP - 1074 PB - Springer CY - New York ER -