TY - JOUR A1 - Hönzke, Stefan A1 - Gerecke, Christian A1 - Elpelt, Anja A1 - Zhang, Nan A1 - Unbehauen, Michael A1 - Kral, Vivian A1 - Fleige, Emanuel A1 - Paulus, Florian A1 - Haag, Rainer A1 - Schäfer-Korting, Monika A1 - Kleuser, Burkhard A1 - Hedtrich, Sarah T1 - Tailored dendritic core-multishell nanocarriers for efficient dermal drug delivery: A systematic top-down approach from synthesis to preclinical testing JF - Journal of controlled release N2 - Drug loaded dendritic core-multishell (CMS) nanocarriers are of especial interest for the treatment of skin diseases, owing to their striking dermal delivery efficiencies following topical applications. CMS nanocarriers are composed of a polyglycerol core, connected by amide-bonds to an inner alkyl shell and an outer methoxy poly(ethylene glycol) shell. Since topically applied nanocarriers are subjected to biodegradation, the application of conventional amide-based CMS nanocarriers (10-A-18-350) has been limited by the potential production of toxic polyglycerol amines. To circumvent this issue, three tailored ester-based CMS nanocarriers (10-E-12-350, 10-E-15-350, 10-E-18-350) of varying inner alkyl chain length were synthesized and comprehensively characterized in terms of particle size, drug loading, biodegradation and dermal drug delivery efficiency. Dexamethasone (DXM), a potent drug widely used for the treatment of inflammatory skin diseases, was chosen as a therapeutically relevant test compound for the present study. Ester-and amide-based CMS nanocarriers delivered DXM more efficiently into human skin than a commercially available DXM cream. Subsequent in vitro and in vivo toxicity studies identified CMS (10-E-15-350) as the most biocompatible carrier system. The anti-inflammatory potency of DXM-loaded CMS (10-E-15-350) nanocarriers was assessed in TNF alpha supplemented skin models, where a significant reduction of the pro-inflammatory cytokine IL-8 was seen, with markedly greater efficacy than commercial DXM cream. In summary, we report the rational design and characterization of tailored, biodegradable, ester-based CMS nanocarriers, and their subsequent stepwise screening for biocompatibility, dermal delivery efficiency and therapeutic efficacy in a top-down approach yielding the best carrier system for topical applications. (C) 2016 Elsevier B.V. All rights reserved. KW - Dendritic core-multishell nanocarriers KW - Biocompatibility KW - Dexamethasone KW - Inflammatory skin disease KW - Dermal drug delivery KW - Skin model Y1 - 2016 U6 - https://doi.org/10.1016/j.jconrel.2016.06.030 SN - 0168-3659 SN - 1873-4995 VL - 242 SP - 50 EP - 63 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zhang, Nan A1 - Said, Andre A1 - Wischke, Christian A1 - Kral, Vivian A1 - Brodwolf, Robert A1 - Volz, Pierre A1 - Boreham, Alexander A1 - Gerecke, Christian A1 - Li, Wenzhong A1 - Neffe, Axel T. A1 - Kleuser, Burkhard A1 - Alexiev, Ulrike A1 - Lendlein, Andreas A1 - Schäfer-Korting, Monika T1 - Poly[acrylonitrile-co-(N-vinyl pyrrolidone)] nanoparticles - Composition-dependent skin penetration enhancement of a dye probe and biocompatibility JF - European Journal of Pharmaceutics and Biopharmaceutics N2 - Nanoparticles can improve topical drug delivery: size, surface properties and flexibility of polymer nanoparticles are defining its interaction with the skin. Only few studies have explored skin penetration for one series of structurally related polymer particles with systematic alteration of material composition. Here, a series of rigid poly[acrylonitrile-co-(N-vinyl pyrrolidone)] model nanoparticles stably loaded with Nile Red or Rhodamin B, respectively, was comprehensively studied for biocompatibility and functionality. Surface properties were altered by varying the molar content of hydrophilic NVP from 0 to 24.1% and particle size ranged from 35 to 244 nm. Whereas irritancy and genotoxicity were not revealed, lipophilic and hydrophilic nanoparticles taken up by keratinocytes affected cell viability. Skin absorption of the particles into viable skin ex vivo was studied using Nile Red as fluorescent probe. Whilst an intact stratum corneum efficiently prevented penetration, almost complete removal of the horny layer allowed nanoparticles of smaller size and hydrophilic particles to penetrate into viable epidermis and dermis. Hence, systematic variations of nanoparticle properties allows gaining insights into critical criteria for biocompatibility and functionality of novel nanocarriers for topical drug delivery and risks associated with environmental exposure. KW - Biocompatibility testing KW - Drug delivery systems KW - Nanoparticle KW - Poly[acrylonitrile-co-(N-vinyl pyrrolidone)] KW - Polymers KW - Skin absorption Y1 - 2017 U6 - https://doi.org/10.1016/j.ejpb.2016.10.019 SN - 0939-6411 SN - 1873-3441 VL - 116 SP - 66 EP - 75 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Gerecke, Christian A1 - Edlich, Alexander A1 - Giulbudagian, Michael A1 - Schumacher, Fabian A1 - Zhang, Nan A1 - Said, Andre A1 - Yealland, Guy A1 - Lohan, Silke B. A1 - Neumann, Falko A1 - Meinke, Martina C. A1 - Ma, Nan A1 - Calderon, Marcelo A1 - Hedtrich, Sarah A1 - Schaefer-Korting, Monika A1 - Kleuser, Burkhard T1 - Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes JF - Nanotoxicology N2 - Novel nanogels that possess the capacity to change their physico-chemical properties in response to external stimuli are promising drug-delivery candidates for the treatment of severe skin diseases. As thermoresponsive nanogels (tNGs) are capable of enhancing penetration through biological barriers such as the stratum corneum and are taken up by keratinocytes of human skin, potential adverse consequences of their exposure must be elucidated. In this study, tNGs were synthesized from dendritic polyglycerol (dPG) and two thermoresponsive polymers. tNG_dPG_tPG are the combination of dPG with poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)) and tNG_dPG_pNIPAM the one with poly(N-isopropylacrylamide) (pNIPAM). Both thermoresponsive nanogels are able to incorporate high amounts of dexamethasone and tacrolimus, drugs used in the treatment of severe skin diseases. Cellular uptake, intracellular localization and the toxicological properties of the tNGs were comprehensively characterized in primary normal human keratinocytes (NHK) and in spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (HaCaT). Laser scanning confocal microscopy revealed fluorescently labeled tNGs entered into the cells and localized predominantly within lysosomal compartments. MTT assay, comet assay and carboxy-H2DCFDA assay, demonstrated neither cytotoxic or genotoxic effects, nor any induction of reactive oxygen species of the tNGs in keratinocytes. In addition, both tNGs were devoid of eye irritation potential as shown by bovine corneal opacity and permeability (BCOP) test and red blood cell (RBC) hemolysis assay. Therefore, our study provides evidence that tNGs are locally well tolerated and underlines their potential for cutaneous drug delivery. KW - Drug delivery KW - nanoparticles KW - particle characterization KW - keratinocytes KW - nanotoxicology Y1 - 2017 U6 - https://doi.org/10.1080/17435390.2017.1292371 SN - 1743-5390 SN - 1743-5404 VL - 11 SP - 267 EP - 277 PB - Routledge, Taylor & Francis Group CY - Abingdon ER -