TY - JOUR A1 - Stolterfoht, Martin A1 - Le Corre, Vincent M. A1 - Feuerstein, Markus A1 - Caprioglio, Pietro A1 - Koster, Lambert Jan Anton A1 - Neher, Dieter T1 - Voltage-Dependent Photoluminescence and How It Correlates with the Fill Factor and Open-Circuit Voltage in Perovskite Solar Cells JF - Acs energy letters N2 - Optimizing the photoluminescence (PL) yield of a solar cell has long been recognized as a key principle to maximize the power conversion efficiency. While PL measurements are routinely applied to perovskite films and solar cells under open circuit conditions (V-OC), it remains unclear how the emission depends on the applied voltage. Here, we performed PL(V) measurements on perovskite cells with different hole transport layer thicknesses and doping concentrations, resulting in remarkably different fill factors (FFs). The results reveal that PL(V) mirrors the current-voltage (JV) characteristics in the power-generating regime, which highlights an interesting correlation between radiative and nonradiative recombination losses. In particular, high FF devices show a rapid quenching of PL(V) from open-circuit to the maximum power point. We conclude that, while the PL has to be maximized at V-OC at lower biases < V-OC the PL must be rapidly quenched as charges need to be extracted prior to recombination. Y1 - 2019 U6 - https://doi.org/10.1021/acsenergylett.9b02262 SN - 2380-8195 VL - 4 IS - 12 SP - 2887 EP - 2892 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Marquez, Jose A. A1 - Zhang, Shanshan A1 - Hages, Charles J. A1 - Rothhardt, Daniel A1 - Albrecht, Steve A1 - Burn, Paul L. A1 - Meredith, Paul A1 - Unold, Thomas A1 - Neher, Dieter T1 - Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells JF - Nature Energy N2 - The performance of perovskite solar cells is predominantly limited by non-radiative recombination, either through trap-assisted recombination in the absorber layer or via minority carrier recombination at the perovskite/transport layer interfaces. Here, we use transient and absolute photoluminescence imaging to visualize all non-radiative recombination pathways in planar pintype perovskite solar cells with undoped organic charge transport layers. We find significant quasi-Fermi-level splitting losses (135 meV) in the perovskite bulk, whereas interfacial recombination results in an additional free energy loss of 80 meV at each individual interface, which limits the open-circuit voltage (V-oc) of the complete cell to similar to 1.12 V. Inserting ultrathin interlayers between the perovskite and transport layers leads to a substantial reduction of these interfacial losses at both the p and n contacts. Using this knowledge and approach, we demonstrate reproducible dopant-free 1 cm(2) perovskite solar cells surpassing 20% efficiency (19.83% certified) with stabilized power output, a high V-oc (1.17 V) and record fill factor (>81%). KW - Energy science and technology KW - Solar cells Y1 - 2018 U6 - https://doi.org/10.1038/s41560-018-0219-8 SN - 2058-7546 VL - 3 IS - 10 SP - 847 EP - 854 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Warby, Jonathan A1 - Zu, Fengshuo A1 - Zeiske, Stefan A1 - Gutierrez-Partida, Emilio A1 - Frohloff, Lennart A1 - Kahmann, Simon A1 - Frohna, Kyle A1 - Mosconi, Edoardo A1 - Radicchi, Eros A1 - Lang, Felix A1 - Shah, Sahil A1 - Pena-Camargo, Francisco A1 - Hempel, Hannes A1 - Unold, Thomas A1 - Koch, Norbert A1 - Armin, Ardalan A1 - De Angelis, Filippo A1 - Stranks, Samuel D. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Understanding performance limiting interfacial recombination in pin Perovskite solar cells JF - Advanced energy materials N2 - Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto-electronic properties and their successful integration into multijunction cells. However, the performance of single- and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C-60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first-principle numerical simulations. It is found that the most significant contribution to the total C-60-induced recombination loss occurs within the first monolayer of C-60, rather than in the bulk of C-60 or at the perovskite surface. The experiments show that the C-60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C-60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells. KW - C60 KW - defects KW - interface recombination KW - loss mechanisms KW - perovskites KW - solar cells Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202103567 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 12 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Armin, Ardalan A1 - Philippa, Bronson A1 - Neher, Dieter T1 - The Role of Space Charge Effects on the Competition between Recombination and Extraction in Solar Cells with Low-Mobility Photoactive Layers JF - The journal of physical chemistry letters N2 - The competition between charge extraction and nongeminate recombination critically determines the current-voltage characteristics of organic solar cells (OSCs) and their fill factor. As a measure of this competition, several figures of merit (FOMs) have been put forward; however, the impact of space charge effects has been either neglected, or not specifically addressed. Here we revisit recently reported FOMs and discuss the role of space charge effects on the interplay between recombination and extraction. We find that space charge effects are the primary cause for the onset of recombination in so-called non-Langevin systems, which also depends on the slower carrier mobility and recombination coefficient. The conclusions are supported with numerical calculations and experimental results of 25 different donor/acceptor OSCs with different charge transport parameters, active layer thicknesses or composition ratios. The findings represent a conclusive understanding of bimolecular recombination for drift dominated photocurrents and allow one to minimize these losses for given device parameters. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpclett.6b02106 SN - 1948-7185 VL - 7 SP - 4716 EP - 4721 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zhang, Shanshan A1 - Hosseini, Seyed Mehrdad A1 - Gunder, Rene A1 - Petsiuk, Andrei A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Shoaee, Safa A1 - Meredith, Paul A1 - Schorr, Susan A1 - Unold, Thomas A1 - Burn, Paul L. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - The Role of Bulk and Interface Recombination in High-Efficiency Low-Dimensional Perovskite Solar Cells JF - Advanced materials N2 - 2D Ruddlesden-Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite-based cells. Herein, 2D (CH3(CH2)(3)NH3)(2)(CH3NH3)(n-1)PbnI3n+1 perovskite cells with different numbers of [PbI6](4-) sheets (n = 2-4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open-circuit voltage (V-OC) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C-60 interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi-Fermi level splitting matches the device V-OC within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements. KW - 2D perovskites KW - interface recombination KW - perovskite solar cells KW - photoluminescence KW - V-OC loss Y1 - 2019 U6 - https://doi.org/10.1002/adma.201901090 SN - 0935-9648 SN - 1521-4095 VL - 31 IS - 30 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Marquez, Jose A. A1 - Nordmann, Joleik A1 - Zhang, Shanshan A1 - Rothhardt, Daniel A1 - Hörmann, Ulrich A1 - Amir, Yohai A1 - Redinger, Alex A1 - Kegelmann, Lukas A1 - Zu, Fengshuo A1 - Albrecht, Steve A1 - Koch, Norbert A1 - Kirchartz, Thomas A1 - Saliba, Michael A1 - Unold, Thomas A1 - Neher, Dieter T1 - The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells JF - Energy & environmental science N2 - Charge transport layers (CTLs) are key components of diffusion controlled perovskite solar cells, however, they can induce additional non-radiative recombination pathways which limit the open circuit voltage (V-OC) of the cell. In order to realize the full thermodynamic potential of the perovskite absorber, both the electron and hole transport layer (ETL/HTL) need to be as selective as possible. By measuring the photoluminescence yield of perovskite/CTL heterojunctions, we quantify the non-radiative interfacial recombination currents in pin- and nip-type cells including high efficiency devices (21.4%). Our study comprises a wide range of commonly used CTLs, including various hole-transporting polymers, spiro-OMeTAD, metal oxides and fullerenes. We find that all studied CTLs limit the V-OC by inducing an additional non-radiative recombination current that is in most cases substantially larger than the loss in the neat perovskite and that the least-selective interface sets the upper limit for the V-OC of the device. Importantly, the V-OC equals the internal quasi-Fermi level splitting (QFLS) in the absorber layer only in high efficiency cells, while in poor performing devices, the V-OC is substantially lower than the QFLS. Using ultraviolet photoelectron spectroscopy and differential charging capacitance experiments we show that this is due to an energy level mis-alignment at the p-interface. The findings are corroborated by rigorous device simulations which outline important considerations to maximize the V-OC. This work highlights that the challenge to suppress non-radiative recombination losses in perovskite cells on their way to the radiative limit lies in proper energy level alignment and in suppression of defect recombination at the interfaces. Y1 - 2019 U6 - https://doi.org/10.1039/c9ee02020a SN - 1754-5692 SN - 1754-5706 VL - 12 IS - 9 SP - 2778 EP - 2788 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zeiske, Stefan A1 - Sandberg, Oskar J. A1 - Zarrabi, Nasim A1 - Wolff, Christian Michael A1 - Raoufi, Meysam A1 - Peña-Camargo, Francisco A1 - Gutierrez-Partida, Emilio A1 - Meredith, Paul A1 - Stolterfoht, Martin A1 - Armin, Ardalan T1 - Static disorder in lead halide perovskites JF - The journal of physical chemistry letters N2 - In crystalline and amorphous semiconductors, the temperature-dependent Urbach energy can be determined from the inverse slope of the logarithm of the absorption spectrum and reflects the static and dynamic energetic disorder. Using recent advances in the sensitivity of photocurrent spectroscopy methods, we elucidate the temperature-dependent Urbach energy in lead halide perovskites containing different numbers of cation components. We find Urbach energies at room temperature to be 13.0 +/- 1.0, 13.2 +/- 1.0, and 13.5 +/- 1.0 meV for single, double, and triple cation perovskite. Static, temperature-independent contributions to the Urbach energy are found to be as low as 5.1 ?+/- 0.5, 4.7 +/- 0.3, and 3.3 +/- 0.9 meV for the same systems. Our results suggest that, at a low temperature, the dominant static disorder in perovskites is derived from zero-point phonon energy rather than structural disorder. This is unusual for solution-processed semiconductors but broadens the potential application of perovskites further to quantum electronics and devices. KW - Cations KW - External quantum efficiency KW - Perovskites KW - Solar cells KW - Solar energy Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpclett.2c01652 SN - 1948-7185 VL - 13 IS - 31 SP - 7280 EP - 7285 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Pena-Camargo, Francisco A1 - Thiesbrummel, Jarla A1 - Hempel, Hannes A1 - Musiienko, Artem A1 - Le Corre, Vincent M. A1 - Diekmann, Jonas A1 - Warby, Jonathan A1 - Unold, Thomas A1 - Lang, Felix A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Revealing the doping density in perovskite solar cells and its impact on device performance JF - Applied physics reviews N2 - Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterization techniques, comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the electrode charge per cell volume under short-circuit conditions ( CUbi/eV), which amounts to roughly 10(16) cm(-3). This figure of merit represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results consistently demonstrate that the doping density is below this critical threshold 10(12) cm(-3), which means << CUbi / e V) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift-diffusion simulations, which confirm that the device performance is not affected by such low doping densities. Y1 - 2022 U6 - https://doi.org/10.1063/5.0085286 SN - 1931-9401 VL - 9 IS - 2 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Lang, Felix A1 - Köhnen, Eike A1 - Warby, Jonathan A1 - Xu, Ke A1 - Grischek, Max A1 - Wagner, Philipp A1 - Neher, Dieter A1 - Korte, Lars A1 - Albrecht, Steve A1 - Stolterfoht, Martin T1 - Revealing fundamental efficiency limits of monolithic perovskite/silicon tandem photovoltaics through subcell characterization JF - ACS Energy Letters N2 - Perovskite/silicon tandem photovoltaics (PVs) promise to accelerate the decarbonization of our energy systems. Here, we present a thorough subcell diagnosis methodology to reveal deep insights into the practical efficiency limitations of state-of-the-art perovskite/silicon tandem PVs. Our subcell selective intensity-dependent photoluminescence (PL) and injection-dependent electroluminescence (EL) measurements allow independent assessment of pseudo-V-OC and power conversion efficiencies (PCEs) for both subcells. We reveal identical metrics from PL and EL, which implies well-aligned energy levels throughout the entire cell. Relatively large ideality factors and insufficient charge extraction, however, cause each a fill factor penalty of about 6% (absolute). Using partial device stacks, we then identify significant losses in standard perovskite subcells due to bulk and interfacial recombination. Lastly, we present strategies to minimize these losses using triple halide (CsFAPb(IBrCI)(3)) based perovskites. Our results give helpful feedback for device development and lay the foundation toward advanced perovskite/silicon tandem PVs capable of exceeding 33% PCE. Y1 - 2021 U6 - https://doi.org/10.1021/acsenergylett.1c01783 SN - 2380-8195 VL - 6 IS - 11 SP - 3982 EP - 3991 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yazmaciyan, Aren A1 - Stolterfoht, Martin A1 - Burn, Paul L. A1 - Lin, Qianqian A1 - Meredith, Paul A1 - Armin, Ardalan T1 - Recombination losses above and below the transport percolation threshold in bulk heterojunction organic solar cells JF - Advanced energy materials N2 - Achieving the highest power conversion efficiencies in bulk heterojunction organic solar cells requires a morphology that delivers electron and hole percolation pathways for optimized transport, plus sufficient donor:acceptor contact area for near unity charge transfer state formation. This is a significant structural challenge, particularly in semiconducting polymer:fullerene systems. This balancing act in the model high efficiency PTB7:PC70BM blend is studied by tuning the donor:acceptor ratio, with a view to understanding the recombination loss mechanisms above and below the fullerene transport percolation threshold. The internal quantum efficiency is found to be strongly correlated to the slower carrier mobility in agreement with other recent studies. Furthermore, second-order recombination losses dominate the shape of the current density-voltage curve in efficient blend combinations, where the fullerene phase is percolated. However, below the charge transport percolation threshold, there is an electric-field dependence of first-order losses, which includes electric-field-dependent photogeneration. In the intermediate regime, the fill factor appears to be limited by both first- and second-order losses. These findings provide additional basic understanding of the interplay between the bulk heterojunction morphology and the order of recombination in organic solar cells. They also shed light on the limitations of widely used transport models below the percolation threshold. KW - bulk heterojunctions KW - charge transport KW - organic solar cells KW - percolation threshold KW - recombination losses Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201703339 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 18 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Würfel, Uli A1 - Perdigón-Toro, Lorena A1 - Kurpiers, Jona A1 - Wolff, Christian Michael A1 - Caprioglio, Pietro A1 - Rech, Jeromy James A1 - Zhu, Jingshuai A1 - Zhan, Xiaowei A1 - You, Wei A1 - Shoaee, Safa A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Recombination between Photogenerated and Electrode-Induced Charges Dominates the Fill Factor Losses in Optimized Organic Solar Cells JF - The journal of physical chemistry letters N2 - Charge extraction in organic solar cells (OSCs) is commonly believed to be limited by bimolecular recombination of photogenerated charges. However, the fill factor of OSCs is usually almost entirely governed by recombination processes that scale with the first order of the light intensity. This linear loss was often interpreted to be a consequence of geminate or trap-assisted recombination. Numerical simulations show that this linear dependence is a direct consequence of the large amount of excess dark charge near the contact. The first-order losses increase with decreasing mobility of minority carriers, and we discuss the impact of several material and device parameters on this loss mechanism. This work highlights that OSCs are especially vulnerable to injected charges as a result of their poor charge transport properties. This implies that dark charges need to be better accounted for when interpreting electro-optical measurements and charge collection based on simple figures of merit. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpclett.9b01175 SN - 1948-7185 VL - 10 IS - 12 SP - 3473 EP - 3480 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Le Corre, Vincent M. A1 - Diekmann, Jonas A1 - Peña-Camargo, Francisco A1 - Thiesbrummel, Jarla A1 - Tokmoldin, Nurlan A1 - Gutierrez-Partida, Emilio A1 - Peters, Karol Pawel A1 - Perdigón-Toro, Lorena A1 - Futscher, Moritz H. A1 - Lang, Felix A1 - Warby, Jonathan A1 - Snaith, Henry J. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Quantification of efficiency losses due to mobile ions in Perovskite solar cells via fast hysteresis measurements JF - Solar RRL N2 - Perovskite semiconductors differ from most inorganic and organic semiconductors due to the presence of mobile ions in the material. Although the phenomenon is intensively investigated, important questions such as the exact impact of the mobile ions on the steady-state power conversion efficiency (PCE) and stability remain. Herein, a simple method is proposed to estimate the efficiency loss due to mobile ions via "fast-hysteresis" measurements by preventing the perturbation of mobile ions out of their equilibrium position at fast scan speeds (approximate to 1000 V s(-1)). The "ion-free" PCE is between 1% and 3% higher than the steady-state PCE, demonstrating the importance of ion-induced losses, even in cells with low levels of hysteresis at typical scan speeds (approximate to 100mv s(-1)). The hysteresis over many orders of magnitude in scan speed provides important information on the effective ion diffusion constant from the peak hysteresis position. The fast-hysteresis measurements are corroborated by transient charge extraction and capacitance measurements and numerical simulations, which confirm the experimental findings and provide important insights into the charge carrier dynamics. The proposed method to quantify PCE losses due to field screening induced by mobile ions clarifies several important experimental observations and opens up a large range of future experiments. KW - hysteresis KW - mobile ions KW - perovskite solar cells Y1 - 2021 U6 - https://doi.org/10.1002/solr.202100772 SN - 2367-198X VL - 6 IS - 4 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hempel, Hannes A1 - Savenjie, Tom J. A1 - Stolterfoht, Martin A1 - Neu, Jens A1 - Failla, Michele A1 - Paingad, Vaisakh C. A1 - Kužel, Petr A1 - Heilweil, Edwin J. A1 - Spies, Jacob A. A1 - Schleuning, Markus A1 - Zhao, Jiashang A1 - Friedrich, Dennis A1 - Schwarzburg, Klaus A1 - Siebbeles, Laurens D. A. A1 - Dörflinger, Patrick A1 - Dyakonov, Vladimir A1 - Katoh, Ryuzi A1 - Hong, Min Ji A1 - Labram, John G. A1 - Monti, Maurizio A1 - Butler-Caddle, Edward A1 - Lloyd-Hughes, James A1 - Taheri, Mohammad M. A1 - Baxter, Jason B. A1 - Magnanelli, Timothy J. A1 - Luo, Simon A1 - Cardon, Joseph M. A1 - Ardo, Shane A1 - Unold, Thomas T1 - Predicting solar cell performance from terahertz and microwave spectroscopy JF - Advanced energy materials N2 - Mobilities and lifetimes of photogenerated charge carriers are core properties of photovoltaic materials and can both be characterized by contactless terahertz or microwave measurements. Here, the expertise from fifteen laboratories is combined to quantitatively model the current-voltage characteristics of a solar cell from such measurements. To this end, the impact of measurement conditions, alternate interpretations, and experimental inter-laboratory variations are discussed using a (Cs,FA,MA)Pb(I,Br)(3) halide perovskite thin-film as a case study. At 1 sun equivalent excitation, neither transport nor recombination is significantly affected by exciton formation or trapping. Terahertz, microwave, and photoluminescence transients for the neat material yield consistent effective lifetimes implying a resistance-free JV-curve with a potential power conversion efficiency of 24.6 %. For grainsizes above approximate to 20 nm, intra-grain charge transport is characterized by terahertz sum mobilities of approximate to 32 cm(2) V-1 s(-1). Drift-diffusion simulations indicate that these intra-grain mobilities can slightly reduce the fill factor of perovskite solar cells to 0.82, in accordance with the best-realized devices in the literature. Beyond perovskites, this work can guide a highly predictive characterization of any emerging semiconductor for photovoltaic or photoelectrochemical energy conversion. A best practice for the interpretation of terahertz and microwave measurements on photovoltaic materials is presented. KW - lifetime KW - microwaves KW - mobility KW - solar cells KW - terahertz Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202102776 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 13 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Kirchartz, Thomas A1 - Márquez, José A. A1 - Stolterfoht, Martin A1 - Unold, Thomas T1 - Photoluminescence-based characterization of halide perovskites for photovoltaics JF - Advanced Energy Materials N2 - Photoluminescence spectroscopy is a widely applied characterization technique for semiconductor materials in general and halide perovskite solar cell materials in particular. It can give direct information on the recombination kinetics and processes as well as the internal electrochemical potential of free charge carriers in single semiconductor layers, layer stacks with transport layers, and complete solar cells. The correct evaluation and interpretation of photoluminescence requires the consideration of proper excitation conditions, calibration and application of the appropriate approximations to the rather complex theory, which includes radiative recombination, non-radiative recombination, interface recombination, charge transfer, and photon recycling. In this article, an overview is given of the theory and application to specific halide perovskite compositions, illustrating the variables that should be considered when applying photoluminescence analysis in these materials. KW - metal halide perovskites KW - numerical simulations KW - photoluminescence KW - photon recycling Y1 - 2020 U6 - https://doi.org/10.1002/aenm.201904134 SN - 1614-6832 SN - 1614-6840 VL - 10 IS - 26 SP - 1 EP - 21 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Zu, Fengshuo A1 - Warby, Jonathan A1 - Stolterfoht, Martin A1 - Li, Jinzhao A1 - Shin, Dongguen A1 - Unger, Eva A1 - Koch, Norbert T1 - Photoinduced energy-level realignment at interfaces between organic semiconductors and metal-halide perovskites JF - Physical review letters N2 - In contrast to the common conception that the interfacial energy-level alignment is affixed once the interface is formed, we demonstrate that heterojunctions between organic semiconductors and metal-halide perovskites exhibit huge energy-level realignment during photoexcitation. Importantly, the photoinduced level shifts occur in the organic component, including the first molecular layer in direct contact with the perovskite. This is caused by charge-carrier accumulation within the organic semiconductor under illumination and the weak electronic coupling between the junction components. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevLett.127.246401 SN - 0031-9007 SN - 1079-7114 VL - 127 IS - 24 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Brinkmann, Kai Oliver A1 - Becker, Tim A1 - Zimmermann, Florian A1 - Kreusel, Cedric A1 - Gahlmann, Tobias A1 - Theisen, Manuel A1 - Haeger, Tobias A1 - Olthof, Selina A1 - Tückmantel, Christian A1 - Günster, M. A1 - Maschwitz, Timo A1 - Göbelsmann, Fabian A1 - Koch, Christine A1 - Hertel, Dirk A1 - Caprioglio, Pietro A1 - Peña-Camargo, Francisco A1 - Perdigón-Toro, Lorena A1 - Al-Ashouri, Amran A1 - Merten, Lena A1 - Hinderhofer, Alexander A1 - Gomell, Leonie A1 - Zhang, Siyuan A1 - Schreiber, Frank A1 - Albrecht, Steve A1 - Meerholz, Klaus A1 - Neher, Dieter A1 - Stolterfoht, Martin A1 - Riedl, Thomas T1 - Perovskite-organic tandem solar cells with indium oxide interconnect JF - Nature N2 - Multijunction solar cells can overcome the fundamental efficiency limits of single-junction devices. The bandgap tunability of metal halide perovskite solar cells renders them attractive for multijunction architectures(1). Combinations with silicon and copper indium gallium selenide (CIGS), as well as all-perovskite tandem cells, have been reported(2-5). Meanwhile, narrow-gap non-fullerene acceptors have unlocked skyrocketing efficiencies for organic solar cells(6,7). Organic and perovskite semiconductors are an attractive combination, sharing similar processing technologies. Currently, perovskite-organic tandems show subpar efficiencies and are limited by the low open-circuit voltage (V-oc) of wide-gap perovskite cells(8) and losses introduced by the interconnect between the subcells(9,10). Here we demonstrate perovskite-organic tandem cells with an efficiency of 24.0 per cent (certified 23.1 per cent) and a high V-oc of 2.15 volts. Optimized charge extraction layers afford perovskite subcells with an outstanding combination of high V-oc and fill factor. The organic subcells provide a high external quantum efficiency in the near-infrared and, in contrast to paradigmatic concerns about limited photostability of non-fullerene cells(11), show an outstanding operational stability if excitons are predominantly generated on the non-fullerene acceptor, which is the case in our tandems. The subcells are connected by an ultrathin (approximately 1.5 nanometres) metal-like indium oxide layer with unprecedented low optical/electrical losses. This work sets a milestone for perovskite-organic tandems, which outperform the best p-i-n perovskite single junctions(12) and are on a par with perovskite-CIGS and all-perovskite multijunctions(13). Y1 - 2022 U6 - https://doi.org/10.1038/s41586-022-04455-0 SN - 0028-0836 SN - 1476-4687 VL - 604 IS - 7905 SP - 280 EP - 286 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Ye, Fangyuan A1 - Zhang, Shuo A1 - Warby, Jonathan A1 - Wu, Jiawei A1 - Gutierrez-Partida, Emilio A1 - Lang, Felix A1 - Shah, Sahil A1 - Saglamkaya, Elifnaz A1 - Sun, Bowen A1 - Zu, Fengshuo A1 - Shoai, Safa A1 - Wang, Haifeng A1 - Stiller, Burkhard A1 - Neher, Dieter A1 - Zhu, Wei-Hong A1 - Stolterfoht, Martin A1 - Wu, Yongzhen T1 - Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane JF - Nature Communications N2 - Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-34203-x SN - 2041-1723 VL - 13 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Samson, Stephanie A1 - Rech, Jeromy A1 - Perdigón-Toro, Lorena A1 - Peng, Zhengxing A1 - Shoaee, Safa A1 - Ade, Harald A1 - Neher, Dieter A1 - Stolterfoht, Martin A1 - You, Wei T1 - Organic solar cells with large insensitivity to donor polymer molar mass across all acceptor classes JF - ACS applied polymer materials N2 - Donor polymer number-average molar mass (M-n) has long been known to influence organic photovoltaic (OPV) performance via changes in both the polymer properties and the resulting bulk heterojunction morphology. The exact nature of these M-n effects varies from system to system, although there is generally some intermediate M-n that results in optimal performance. Interestingly, our earlier work with the difluorobenzotriazole (FTAZ)-based donor polymer, paired with either N2200 (polymer acceptor) or PC61BM (fullerene acceptor), PcBm demonstrated <10% variation in power conversion efficiency and a consistent morphology over a large span of M-n (30 kg/mol to over 100 kg/mol). Would such insensitivity to polymer M-n still hold true when prevailing small molecular acceptors were used with FTAZ? To answer this question, we explored the impact of FTAZ on OPVs with ITIC, a high-performance small-molecule fused-ring electron acceptor (FREA). By probing the photovoltaic characteristics of the resulting OPVs, we show that a similar FTAZ mn insensitivity is also found in the FTAZ:ITIC system. This study highlights a single-donor polymer which, when paired with an archetypal fullerene, polymer, and FREA, results in systems that are largely insensitive to donor M. Our results may have implications in polymer batch-to-batch reproducibility, in particular, relaxing the need for tight M-n control during synthesis. KW - polymer solar cells KW - conjugated polymers KW - fullerenes KW - fluorination KW - molecular weight KW - non-fullerene acceptors KW - power conversion efficiency Y1 - 2020 U6 - https://doi.org/10.1021/acsapm.0c01041 SN - 2637-6105 VL - 2 IS - 11 SP - 5300 EP - 5308 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Caprioglio, Pietro A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Unold, Thomas A1 - Rech, Bernd A1 - Albrecht, Steve A1 - Neher, Dieter T1 - On the relation between the open-circuit voltage and quasi-fermi level splitting in efficient perovskite solar cells JF - advanced energy materials N2 - Today's perovskite solar cells (PSCs) are limited mainly by their open‐circuit voltage (VOC) due to nonradiative recombination. Therefore, a comprehensive understanding of the relevant recombination pathways is needed. Here, intensity‐dependent measurements of the quasi‐Fermi level splitting (QFLS) and of the VOC on the very same devices, including pin‐type PSCs with efficiencies above 20%, are performed. It is found that the QFLS in the perovskite lies significantly below its radiative limit for all intensities but also that the VOC is generally lower than the QFLS, violating one main assumption of the Shockley‐Queisser theory. This has far‐reaching implications for the applicability of some well‐established techniques, which use the VOC as a measure of the carrier densities in the absorber. By performing drift‐diffusion simulations, the intensity dependence of the QFLS, the QFLS‐VOC offset and the ideality factor are consistently explained by trap‐assisted recombination and energetic misalignment at the interfaces. Additionally, it is found that the saturation of the VOC at high intensities is caused by insufficient contact selectivity while heating effects are of minor importance. It is concluded that the analysis of the VOC does not provide reliable conclusions of the recombination pathways and that the knowledge of the QFLS‐VOC relation is of great importance. KW - electro-optical materials KW - perovskite solar cells KW - photovoltaic devices KW - thin films Y1 - 2019 U6 - https://doi.org/10.1002/aenm.201901631 SN - 1614-6832 SN - 1614-6840 VL - 9 IS - 33 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Sandberg, Oskar J. A1 - Kurpiers, Jona A1 - Stolterfoht, Martin A1 - Neher, Dieter A1 - Meredith, Paul A1 - Shoaee, Safa A1 - Armin, Ardalan T1 - On the question of the need for a built-in potential in Perovskite solar cells JF - Advanced materials interfaces N2 - Perovskite semiconductors as the active materials in efficient solar cells exhibit free carrier diffusion lengths on the order of microns at low illumination fluxes and many hundreds of nanometers under 1 sun conditions. These lengthscales are significantly larger than typical junction thicknesses, and thus the carrier transport and charge collection should be expected to be diffusion controlled. A consensus along these lines is emerging in the field. However, the question as to whether the built-in potential plays any role is still of matter of some conjecture. This important question using phase-sensitive photocurrent measurements and theoretical device simulations based upon the drift-diffusion framework is addressed. In particular, the role of the built-in electric field and charge-selective transport layers in state-of-the-art p-i-n perovskite solar cells comparing experimental findings and simulation predictions is probed. It is found that while charge collection in the junction does not require a drift field per se, a built-in potential is still needed to avoid the formation of reverse electric fields inside the active layer, and to ensure efficient extraction through the charge transport layers. KW - built-in potential KW - charge collection KW - charge transport layers KW - perovskite solar cells Y1 - 2020 U6 - https://doi.org/10.1002/admi.202000041 SN - 2196-7350 VL - 7 IS - 10 PB - Wiley CY - Hoboken ER -