TY - JOUR A1 - Albrecht, Tanja A1 - Haebel, Sophie A1 - Koch, Anke A1 - Krause, Ulrike A1 - Eckermann, Nora A1 - Steup, Martin T1 - Yeast glycogenin (Glg2p) produced in Escherichia coli is simultaneously glucosylated at two vicinal tyrosin residues but results in a reduced bacterial glycogen accumulation N2 - Saccharomyces cerevisiae possesses two glycogenin isoforms (designated as Glg1p and Glg2p) that both contain a conserved tyrosine residue, Tyr232. However, Glg2p possesses an additional tyrosine residue, Tyr230 and therefore two potential autoglucosylation sites. Glucosylation of Glg2p was studied using both matrix-assisted laser desorption ionization and electrospray quadrupole time of flight mass spectrometry. Glg2p, carrying a C-terminal (His(6)) tag, was produced in Escherichia coli and purified. By tryptic digestion and reversed phase chromatography a peptide (residues 219-246 of the complete Glg2p sequence) was isolated that contained 4-25 glucosyl residues. Following incubation of Glg2p with UDPglucose, more than 36 glucosyl residues were covalently bound to this peptide. Using a combination of cyanogen bromide cleavage of the protein backbone, enzymatic hydrolysis of glycosidic bonds and reversed phase chromatography, mono- and diglucosylated peptides having the sequence PNYGYQSSPAM were generated. MS/MS spectra revealed that glucosyl residues were attached to both Tyr232 and Tyr230 within the same peptide. The formation of the highly glucosylated eukaryotic Glg2p did not favour the bacterial glycogen accumulation. Under various experimental conditions Glg2p-producing cells accumulated approximately 30% less glycogen than a control transformed with a Glg2p lacking plasmid. The size distribution of the glycogen and extractable activities of several glycogen-related enzymes were essentially unchanged. As revealed by high performance anion exchange chromatography, the intracellular maltooligosaccharide pattern of the bacterial cells expressing the functional eukaryotic transgene was significantly altered. Thus, the eukaryotic glycogenin appears to be incompatible with the bacterial initiation of glycogen biosynthesis Y1 - 2004 ER - TY - JOUR A1 - Rading, M. Michael A1 - Sandmann, Michael A1 - Steup, Martin A1 - Chiarugi, Davide A1 - Valleriani, Angelo T1 - Weak correlation of starch and volume in synchronized photosynthetic cells JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - In cultures of unicellular algae, features of single cells, such as cellular volume and starch content, are thought to be the result of carefully balanced growth and division processes. Single-cell analyses of synchronized photoautotrophic cultures of the unicellular alga Chlamydomonas reinhardtii reveal, however, that the cellular volume and starch content are only weakly correlated. Likewise, other cell parameters, e.g., the chlorophyll content per cell, are only weakly correlated with cell size. We derive the cell size distributions at the beginning of each synchronization cycle considering growth, timing of cell division and daughter cell release, and the uneven division of cell volume. Furthermore, we investigate the link between cell volume growth and starch accumulation. This work presents evidence that, under the experimental conditions of light-dark synchronized cultures, the weak correlation between both cell features is a result of a cumulative process rather than due to asymmetric partition of biomolecules during cell division. This cumulative process necessarily limits cellular similarities within a synchronized cell population. Y1 - 2015 U6 - https://doi.org/10.1103/PhysRevE.91.012711 SN - 1539-3755 SN - 1550-2376 VL - 91 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Tenenboim, Hezi A1 - Smirnova, Julia A1 - Willmitzer, Lothar A1 - Steup, Martin A1 - Brotman, Yariv T1 - VMP1-deficient Chlamydomonas exhibits severely aberrant cell morphology and disrupted cytokinesies JF - BMC plant biology N2 - Background: The versatile Vacuole Membrane Protein 1 (VMP1) has been previously investigated in six species. It has been shown to be essential in macroautophagy, where it takes part in autophagy initiation. In addition, VMP1 has been implicated in organellar biogenesis; endo-, exo- and phagocytosis, and protein secretion; apoptosis; and cell adhesion. These roles underly its proven involvement in pancreatitis, diabetes and cancer in humans. Results: In this study we analyzed a VMP1 homologue from the green alga Chlamydomonas reinhardtii. CrVMP1 knockdown lines showed severe phenotypes, mainly affecting cell division as well as the morphology of cells and organelles. We also provide several pieces of evidence for its involvement in macroautophagy. KW - VMP1 KW - Autophagy KW - Cytokinesis Y1 - 2014 U6 - https://doi.org/10.1186/1471-2229-14-121 SN - 1471-2229 VL - 14 PB - BioMed Central CY - London ER - TY - JOUR A1 - Fettke, Jörg A1 - Leifels, Lydia A1 - Brust, Henrike A1 - Herbst, Karoline A1 - Steup, Martin T1 - Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature JF - Journal of experimental botany N2 - Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-C-14]glucose 1-phosphate, [U-C-14]sucrose, [U-C-14]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-C-14]sucrose plus unlabelled equimolar glucose 1-phosphate. C-14-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced C-14 incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 degrees C but the flux of the sucrose-dependent route strongly increases above 20 degrees C. Results are confirmed by in vitro experiments using [U-C-14]glucose 1-phosphate or adenosine-[U-C-14]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C-14-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells. KW - glucose 1-phosphate KW - phosphorylase KW - potato tubers KW - starch KW - starch synthase Y1 - 2012 U6 - https://doi.org/10.1093/jxb/ers014 SN - 0022-0957 VL - 63 IS - 8 SP - 3011 EP - 3029 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hejazi, Mahdi A1 - Fettke, Jörg A1 - Paris, Oskar A1 - Steup, Martin T1 - The two plastidial starch-related dikinases sequentially phosphorylate glucosyl residues at the surface of both the a- and b-type allomorphs of crystallized maltodextrins but the mode of action differs N2 - In this study, two crystallized maltodextrins were generated that consist of the same oligoglucan pattern but differ strikingly in the physical order of double helices. As revealed by x-ray diffraction, they represent the highly ordered A- and B-type allomorphs. Both crystallized maltodextrins were similar in size distribution and birefringence. They were used as model substrates to study the consecutive action of the two starch-related dikinases, the glucan, water dikinase and the phosphoglucan, water dikinase. The glucan, water dikinase and the phosphoglucan, water dikinase selectively esterify glucosyl residues in the C6 and C3 positions, respectively. Recombinant glucan, water dikinase phosphorylated both allomorphs with similar rates and caused complete glucan solubilization. Soluble neutral maltodextrins inhibited the glucan, water dikinase-mediated phosphorylation of crystalline particles. Recombinant phosphoglucan, water dikinase phosphorylated both the A- and B-type allomorphs only following a prephosphorylation by the glucan, water dikinase, and the activity increased with the extent of prephosphorylation. The action of the phosphoglucan, water dikinase on the prephosphorylated A- and B-type allomorphs differed. When acting on the B-type allomorph, by far more phosphoglucans were solubilized as compared with the A type. However, with both allomorphs, the phosphoglucan, water dikinase formed significant amounts of mono-phosphorylated phosphoglucans. Thus, the enzyme is capable of acting on neutral maltodextrins. It is concluded that the actual carbohydrate substrate of the phosphoglucan, water dikinase is defined by physical rather than by chemical parameters. A model is proposed that explains, at the molecular level, the consecutive action of the two starch-related dikinases. Y1 - 2009 UR - http://www.plantphysiol.org/ U6 - https://doi.org/10.1104/pp.109.138750 SN - 0032-0889 ER - TY - JOUR A1 - Ritte, Gerhard A1 - Lloyd, James R. A1 - Eckermann, Nora A1 - Rottmann, Antje A1 - Kossmann, Jens A1 - Steup, Martin T1 - The starch-related R1 protein is an a-glucan, water dikinase Y1 - 2002 SN - 0027-8424 ER - TY - JOUR A1 - Hejazi, Mahdi A1 - Steup, Martin A1 - Fettke, Jörg T1 - The plastidial glucan, water dikinase (GWD) catalyses multiple phosphotransfer reactions JF - The FEBS journal N2 - The plant genome encodes at least two distinct and evolutionary conserved plastidial starch-related dikinases that phosphorylate a low percentage of glucosyl residues at the starch granule surface. Esterification of starch favours the transition of highly ordered a-glucans to a less ordered state and thereby facilitates the cleavage of interglucose bonds by hydrolases. Metabolically most important is the phosphorylation at position C6, which is catalysed by the glucan, water dikinase (GWD). The reactions mediated by recombinant wild-type GWD from Arabidopsis thaliana (AtGWD) and from Solanum tuberosum (StGWD) were studied. Two mutated proteins lacking the conserved histidine residue that is indispensible for glucan phosphorylation were also included. The wild-type GWDs consume approximately 20% more ATP than is required for glucan phosphorylation. Similarly, although incapable of phosphorylating a-glucans, the two mutated dikinase proteins are capable of degrading ATP. Thus, consumption of ATP and phosphorylation of a-glucans are not strictly coupled processes but, to some extent, occur as independent phosphotransfer reactions. As revealed by incubation of the GWDs with [gamma-33P]ATP, the consumption of ATP includes the transfer of the gamma-phosphate group to the GWD protein but this autophosphorylation does not require the conserved histidine residue. Thus, the GWD proteins possess two vicinal phosphorylation sites, both of which are transiently phosphorylated. Following autophosphorylation at both sites, native dikinases flexibly use various terminal phosphate acceptors, such as water, alpha-glucans, AMP and ADP. A model is presented describing the complex phosphotransfer reactions of GWDs as affected by the availability of the various acceptors. KW - glucan phosphorylation KW - glucan KW - water dikinase KW - protein autophosphorylation KW - starch metabolism KW - starch phosphorylation Y1 - 2012 U6 - https://doi.org/10.1111/j.1742-4658.2012.08576.x SN - 1742-464X VL - 279 IS - 11 SP - 1953 EP - 1966 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Stahl, Bernd A1 - Klabunde, Thomas A1 - Witzel, Herbert A1 - Krebs, Bernt A1 - Steup, Martin A1 - Karas, Michael A1 - Hillenkamp, Franz T1 - The oligosaccharides of the Fe(III)-Zn(II) purple acid phosphatase of the red kidney bean : determination of the structure by a combination of matrix-assisted laser desorption-ionization mass spectrometry and selective enzymic degradation Y1 - 1994 ER - TY - JOUR A1 - Hejazi, Mahdi A1 - Fettke, Jörg A1 - Koetting, Oliver A1 - Zeeman, Samuel C. A1 - Steup, Martin T1 - The Laforin-like dual-specificity phosphatase SEX4 from Arabidopsis hydrolyzes both C6-and C3-phosphate esters introduced by starch-related dikinases and thereby affects phase transition of alpha-glucans N2 - The biochemical function of the Laforin-like dual-specific phosphatase AtSEX4 (EC 3.1.3.48) has been studied. Crystalline maltodextrins representing the A- or the B-type allomorph were prephosphorylated using recombinant glucan, water dikinase (StGWD) or the successive action of both plastidial dikinases (StGWD and AtPWD). AtSEX4 hydrolyzed carbon 6-phosphate esters from both the prephosphorylated A- and B-type allomorphs and the kinetic constants are similar. The phosphatase also acted on prelabeled carbon-3 esters from both crystalline maltodextrins. Similarly, native starch granules prelabeled in either the carbon-6 or carbon-3 position were also dephosphorylated by AtSEX4. The phosphatase did also hydrolyze phosphate esters of both prephosphorylated maltodextrins when the (phospho)glucans had been solubilized by heat treatment. Submillimolar concentrations of nonphosphorylated maltodextrins inhibited AtSEX4 provided they possessed a minimum of length and had been solubilized. As opposed to the soluble phosphomaltodextrins, the AtSEX4- mediated dephosphorylation of the insoluble substrates was incomplete and at least 50% of the phosphate esters were retained in the pelletable (phospho) glucans. The partial dephosphorylation of the insoluble glucans also strongly reduced the release of nonphosphorylated chains into solution. Presumably, this effect reflects fast structural changes that following dephosphorylation occur near the surface of the maltodextrin particles. A model is proposed defining distinct stages within the phosphorylation/dephosphorylation-dependent transition of alpha-glucans from the insoluble to the soluble state. Y1 - 2010 UR - http://www.plantphysiol.org/ U6 - https://doi.org/10.1104/pp.109.149914 SN - 0032-0889 ER - TY - JOUR A1 - Fettke, Jörg A1 - Eckermann, Nora A1 - Poeste, Simon A1 - Steup, Martin T1 - The glycan substrate of the cytosolic (Pho 2) phosphorylase isozyme from Pisum sativum L. : identification, linkage analysis and subcellular localization N2 - The subcellular distribution of starch-related enzymes and the phenotype of Arabidopsis mutants defective in starch degradation suggest that the plastidial starch turnover is linked to a cytosolic glycan metabolism. In this communication, a soluble heteroglycan (SHG) from leaves of Pisum sativum L. has been studied. Major constituents of the SHG are galactose, arabinose and glucose. For subcellular location, the SHG was prepared from isolated protoplasts and chloroplasts. On a chlorophyll basis, protoplasts and chloroplasts yielded approximately 70% and less than 5%, respectively, of the amount of the leaf-derived SHG preparation. Thus, most of SHG resides inside the cell but outside the chloroplast. SHG is soluble and not membrane-associated. Using membrane filtration, the SHG was separated into a <10 kDa and a >10 kDa fraction. The latter was resolved into two subfractions (I and II) by field-flow fractionation. In the protoplast-derived >10 kDa SHG preparation the subfraction I was by far the most dominant compound. beta-Glucosyl Yariv reagent was reactive with subfraction II, but not with subfraction I. In in vitro assays the latter acted as glucosyl acceptor for the cytosolic (Pho 2) phosphorylase but not for rabbit muscle phosphorylase. Glycosidic linkage analyses of subfractions I and II and of the Yariv reagent reactive glycans revealed that all three glycans contain a high percentage of arabinogalactan-like linkages. However, SHG possesses a higher content of minor compounds, namely glucosyl, mannosyl, rhamnosyl and fucosyl residues. Based on glycosyl residues and glycosidic linkages, subfraction I possesses a more complex structure than subfraction II Y1 - 2004 SN - 0960-7412 ER - TY - JOUR A1 - Yu, Tien-Shin A1 - Kofler, Heike A1 - Häusler, Rainer E. A1 - Hille, Diana A1 - Flügge, Ulf-Ingo A1 - Zeeman, Samuel C. A1 - Smith, Alison M. A1 - Kossmann, Jens A1 - Lloyd, James R. A1 - Ritte, Gerhard A1 - Steup, Martin A1 - Lue, Wei-Ling A1 - Chen, Jychian A1 - Weber, Andreas P. M. T1 - The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter Y1 - 2001 SN - 1040-4651 ER - TY - JOUR A1 - Hemme, Dorothea A1 - Veyel, Daniel A1 - Muehlhaus, Timo A1 - Sommer, Frederik A1 - Jueppner, Jessica A1 - Unger, Ann-Katrin A1 - Sandmann, Michael A1 - Fehrle, Ines A1 - Schoenfelder, Stephanie A1 - Steup, Martin A1 - Geimer, Stefan A1 - Kopka, Joachim A1 - Giavalisco, Patrick A1 - Schroda, Michael T1 - Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydomonas reinhardtii JF - The plant cell N2 - We applied a top-down systems biology approach to understand how Chlamydomonas reinhardtii acclimates to long-term heat stress (HS) and recovers from it. For this, we shifted cells from 25 to 42 degrees C for 24 h and back to 25 degrees C for >= 8 h and monitored abundances of 1856 proteins/protein groups, 99 polar and 185 lipophilic metabolites, and cytological and photosynthesis parameters. Our data indicate that acclimation of Chlamydomonas to long-term HS consists of a temporally ordered, orchestrated implementation of response elements at various system levels. These comprise (1) cell cycle arrest; (2) catabolism of larger molecules to generate compounds with roles in stress protection; (3) accumulation of molecular chaperones to restore protein homeostasis together with compatible solutes; (4) redirection of photosynthetic energy and reducing power from the Calvin cycle to the de novo synthesis of saturated fatty acids to replace polyunsaturated ones in membrane lipids, which are deposited in lipid bodies; and (5) when sinks for photosynthetic energy and reducing power are depleted, resumption of Calvin cycle activity associated with increased photorespiration, accumulation of reactive oxygen species scavengers, and throttling of linear electron flow by antenna uncoupling. During recovery from HS, cells appear to focus on processes allowing rapid resumption of growth rather than restoring pre-HS conditions. Y1 - 2014 U6 - https://doi.org/10.1105/tpc.114.130997 SN - 1040-4651 SN - 1532-298X VL - 26 IS - 11 SP - 4270 EP - 4297 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Malinova, Irina A1 - Steup, Martin A1 - Fettke, Jörg T1 - Starch-related cytosolic heteroglycans in roots from Arabidopsis thaliana JF - Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants N2 - Both photoautotrophic and heterotrophic plant cells are capable of accumulating starch inside the plastid. However, depending on the metabolic state of the respective cell the starch-related carbon fluxes are different. The vast majority of the transitory starch biosynthesis relies on the hexose phosphate pools derived from the reductive pentose phosphate cycle and, therefore, is restricted to ongoing photosynthesis. Transitory starch is usually degraded in the subsequent dark period and mainly results in the formation of neutral sugars, such as glucose and maltose, that both are exported into the cytosol. The cytosolic metabolism of the two carbohydrates includes reversible glucosyl transfer reactions to a heteroglycan that are mediated by two glucosyl transferases. DPE2 and PHS2 (or, in all other species, Pho2). In heterotrophic cells, accumulation of starch mostly depends on the long distance transport of reduced carbon compounds from source to sink organs and, therefore, includes as an essential step the import of carbohydrates from the cytosol into the starch forming plastids. In this communication, we focus on starch metabolism in heterotrophic tissues from Arabidopsis thaliana wild type plants (and in various starch-related mutants as well). By using hydroponically grown A. thaliana plants, we were able to analyse starch-related biochemical processes in leaves and roots from the same plants. Within the roots we determined starch levels and the morphology of native starch granules. Cytosolic and apoplastic heteroglycans were analysed in roots and compared with those from leaves of the same plants. A. thaliana mutants lacking functional enzymes either inside the plastid (such as phosphoglucomutase) or in the cytosol (disproportionating isoenzyme 2 or the phosphorylase isozyme, PHS2) were included in this study. In roots and leaves from the three mutants (and from the respective wild type organ as well), starch and heteroglycans as well as enzyme patterns were analysed. KW - Cytosolic heteroglycans KW - Cytosolic glucosyl transferases KW - Photoautotrophic tissues KW - Heterotrophic tissues KW - Starch metabolism Y1 - 2011 U6 - https://doi.org/10.1016/j.jplph.2010.12.008 SN - 0176-1617 VL - 168 IS - 12 SP - 1406 EP - 1414 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Eckermann, Nora A1 - Fettke, Jörg A1 - Pauly, Markus A1 - Bazant, Esther A1 - Steup, Martin T1 - Starch-metabolism related isozymes in higher plants Y1 - 2004 ER - TY - JOUR A1 - Koetting, Oliver A1 - Santelia, Diana A1 - Edner, Christoph A1 - Eicke, Simona A1 - Marthaler, Tina A1 - Gentry, Matthew S. A1 - Comparot-Moss, Sylviane A1 - Chen, Jychian A1 - Smith, Alison M. A1 - Steup, Martin A1 - Ritte, Gerhard A1 - Zeeman, Samuel C. T1 - STARCH-EXCESS4 is a laforin-like phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana N2 - Starch is the major storage carbohydrate in plants. It is comprised of glucans that form semicrystalline granules. Glucan phosphorylation is a prerequisite for normal starch breakdown, but phosphoglucan metabolism is not understood. A putative protein phosphatase encoded at the Starch Excess 4 (SEX4) locus of Arabidopsis thaliana was recently shown to be required for normal starch breakdown. Here, we show that SEX4 is a phosphoglucan phosphatase in vivo and define its role within the starch degradation pathway. SEX4 dephosphorylates both the starch granule surface and soluble phosphoglucans in vitro, and sex4 null mutants accumulate phosphorylated intermediates of starch breakdown. These compounds are linear alpha-1,4-glucans esterified with one or two phosphate groups. They are released from starch granules by the glucan hydrolases alpha-amylase and isoamylase. In vitro experiments show that the rate of starch granule degradation is increased upon simultaneous phosphorylation and dephosphorylation of starch. We propose that glucan phosphorylating enzymes and phosphoglucan phosphatases work in synergy with glucan hydrolases to mediate efficient starch catabolism. Y1 - 2009 UR - http://www.plantcell.org/ U6 - https://doi.org/10.1105/tpc.108.064360 SN - 1040-4651 ER - TY - JOUR A1 - Schwarte, Sandra A1 - Wegner, Fanny A1 - Havenstein, Katja A1 - Groth, Detlef A1 - Steup, Martin A1 - Tiedemann, Ralph T1 - Sequence variation, differential expression, and divergent evolution in starch-related genes among accessions of Arabidopsis thaliana JF - Plant molecular biology : an international journal of fundamental research and genetic engineering N2 - Transitory starch metabolism is a nonlinear and highly regulated process. It originated very early in the evolution of chloroplast-containing cells and is largely based on a mosaic of genes derived from either the eukaryotic host cell or the prokaryotic endosymbiont. Initially located in the cytoplasm, starch metabolism was rewired into plastids in Chloroplastida. Relocation was accompanied by gene duplications that occurred in most starch-related gene families and resulted in subfunctionalization of the respective gene products. Starch-related isozymes were then evolutionary conserved by constraints such as internal starch structure, posttranslational protein import into plastids and interactions with other starch-related proteins. 25 starch-related genes in 26 accessions of Arabidopsis thaliana were sequenced to assess intraspecific diversity, phylogenetic relationships, and modes of selection. Furthermore, sequences derived from additional 80 accessions that are publicly available were analyzed. Diversity varies significantly among the starch-related genes. Starch synthases and phosphorylases exhibit highest nucleotide diversities, while pyrophosphatases and debranching enzymes are most conserved. The gene trees are most compatible with a scenario of extensive recombination, perhaps in a Pleistocene refugium. Most genes are under purifying selection, but disruptive selection was inferred for a few genes/substitutiones. To study transcript levels, leaves were harvested throughout the light period. By quantifying the transcript levels and by analyzing the sequence of the respective accessions, we were able to estimate whether transcript levels are mainly determined by genetic (i.e., accession dependent) or physiological (i.e., time dependent) parameters. We also identified polymorphic sites that putatively affect pattern or the level of transcripts. KW - Arabidopsis thaliana KW - Divergent evolution KW - Intraspecific genetic variation KW - Positive selection KW - Starch metabolizing enzymes KW - Transcript levels Y1 - 2015 U6 - https://doi.org/10.1007/s11103-015-0293-2 SN - 0167-4412 SN - 1573-5028 VL - 87 IS - 4-5 SP - 489 EP - 519 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Cisek, Richard A1 - Tokarz, Danielle A1 - Steup, Martin A1 - Tetlow, Ian J. A1 - Emes, Michael J. A1 - Hebelstrup, Kim H. A1 - Blennow, Andreas A1 - Barzda, Virginijus T1 - Second harmonic generation microscopy investigation of the crystalline ultrastructure of three barley starch lines affected by hydration JF - Biomedical optics express N2 - Second harmonic generation (SHG) microscopy is employed to study changes in crystalline organization due to altered gene expression and hydration in barley starch granules. SHG intensity and susceptibility ratio values (R'(SHG)) are obtained using reduced Stokes-Mueller polarimetric microscopy. The maximum R'(SHG) values occur at moderate moisture indicating the narrowest orientation distribution of nonlinear dipoles from the cylindrical axis of glucan helices. The maximum SHG intensity occurs at the highest moisture and amylopectin content. These results support the hypothesis that SHG is caused by ordered hydrogen and hydroxyl bond networks which increase with hydration of starch granules. (C) 2015 Optical Society of America Y1 - 2015 U6 - https://doi.org/10.1364/BOE.6.003694 SN - 2156-7085 VL - 6 IS - 10 SP - 3694 EP - 3700 PB - Optical Society of America CY - Washington ER - TY - JOUR A1 - Cisek, Richard A1 - Tokarz, Danielle A1 - Krouglov, Serguei A1 - Steup, Martin A1 - Emes, Michael J. A1 - Tetlow, Ian J. A1 - Barzda, Virginijus T1 - Second harmonic generation mediated by aligned water in starch granules JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - The origin of second harmonic generation (SHG) in starch granules was investigated using ab initio quantum mechanical modeling and experimentally examined using polarization-in, polarization-out (PIPO) second harmonic generation microscopy. Ab initio calculations revealed that the largest contribution to the SHG signal from A- and B-type allomorphs of starch originates from the anisotropic organization of hydroxide and hydrogen bonds mediated by aligned water found in the polymers. The hypothesis was experimentally tested by imaging maize starch granules under various hydration and heat treatment conditions that alter the hydrogen bond network. The highest SHG intensity was found in fully hydrated starch granules, and heat treatment diminished the SHG intensity. The PIPO SHG imaging showed that dried starch granules have a much higher nonlinear optical susceptibility component ratio than fully hydrated granules. In contrast, deuterated starch granules showed a smaller susceptibility component ratio demonstrating that SHG is highly sensitive to the organization of the hydroxyl and hydrogen bond network. The polarization SHG imaging results of potato starch granules, representing starch allomorph B, were compared to those of maize starch granules representing allomorph A. The results showed that the amount of aligned water was higher in the maize granules. Nonlinear microscopy of starch granules provides evidence that varying hydration conditions leads to significant changes in the nonlinear susceptibility ratio as well as the SHG intensity, supporting the hypothesis from ab initio calculations that the dominant contribution to SHG is due to the ordered hydroxide and hydrogen bond network. Y1 - 2014 U6 - https://doi.org/10.1021/jp508751s SN - 1520-6106 VL - 118 IS - 51 SP - 14785 EP - 14794 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Ritte, Gerhard A1 - Ruth, Lorberth A1 - Steup, Martin T1 - Reversible binding of the starch-related R1 protein to the surface of transitory starch granules Y1 - 2000 ER - TY - JOUR A1 - Kreft, Oliver A1 - Georgieva, Radostina A1 - Bäumler, Hans A1 - Steup, Martin A1 - Müller-Röber, Bernd A1 - Sukhorukov, Gleb B. A1 - Möhwald, Helmuth T1 - Red blood cell templated polyelectrolyte capsules : a novel vehicle for the stable encapsulation of DNA and proteins N2 - A novel method for the encapsulation of biomacromolecules, such as nucleic acids and proteins, into polyelectrolyte microcapsules is described. Fluorescence-labelled double-stranded DNA and human serum albumin (HSA) are used as model substances for encapsulation in hollow microcapsules templated on human erythrocytes. The encapsulation procedure involves an intermediate drying C, step. The accumulation of DNA and HSA in the capsules is observed by confocal laser scanning microscopy, UV spectroscopy, and flourimetry. The mechanism of encapsulation is discussed Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/10003270 U6 - https://doi.org/10.1002/marc.200500777 SN - 1022-1336 ER -