TY - JOUR A1 - Perkins, Anita K. A1 - Santos, Isaac R. A1 - Rose, Andrew L. A1 - Schulz, Kai G. A1 - Grossart, Hans-Peter A1 - Eyre, Bradley D. A1 - Kelaher, Brendan P. A1 - Oakes, Joanne M. T1 - Production of dissolved carbon and alkalinity during macroalgal wrack degradation on beaches BT - a mesocosm experiment with implications for blue carbon JF - Biogeochemistry N2 - Marine macroalgae are a key primary producer in coastal ecosystems, but are often overlooked in blue carbon inventories. Large quantities of macroalgal detritus deposit on beaches, but the fate of wrack carbon (C) is little understood. If most of the wrack carbon is respired back to CO2, there would be no net carbon sequestration. However, if most of the wrack carbon is converted to bicarbonate (alkalinity) or refractory DOC, wrack deposition would represent net carbon sequestration if at least part of the metabolic products (e.g., reduced Fe and S) are permanently removed (i.e., long-term burial) and the DOC is not remineralised. To investigate the release of macroalgal C via porewater and its potential to contribute to C sequestration (blue carbon), we monitored the degradation of Ecklonia radiata in flow-through mesocosms simulating tidal flushing on sandy beaches. Over 60 days, 81% of added E. radiata organic matter (OM) decomposed. Per 1 mol of detritus C, the degradation produced 0.48 +/- 0.34 mol C of dissolved organic carbon (DOC) (59%) and 0.25 +/- 0.07 mol C of dissolved inorganic carbon (DIC) (31%) in porewater, and a small amount of CO2 (0.3 +/- 0.0 mol C; ca. 3%) which was emitted to the atmosphere. A significant amount of carbonate alkalinity was found in porewater, equating to 33% (0.27 +/- 0.05 mol C) of the total degraded C. The degradation occurred in two phases. In the first phase (days 0-3), 27% of the OM degraded, releasing highly reactive DOC. In the second phase (days 4-60), the labile DOC was converted to DIC. The mechanisms underlying E. radiata degradation were sulphate reduction and ammonification. It is likely that the carbonate alkalinity was primarily produced through sulphate reduction. The formation of carbonate alkalinity and semi-labile or refractory DOC from beach wrack has the potential to play an overlooked role in coastal carbon cycling and contribute to marine carbon sequestration. KW - Tidal pumping KW - Organic matter degradation KW - Carbon cycle KW - Mineralisation KW - Porewater exchange KW - Submarine groundwater discharge Y1 - 2022 U6 - https://doi.org/10.1007/s10533-022-00946-4 SN - 0168-2563 SN - 1573-515X VL - 160 IS - 2 SP - 159 EP - 175 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Hornick, Thomas A1 - Bach, Lennart T. A1 - Crawfurd, Katharine J. A1 - Spilling, Kristian A1 - Achterberg, Eric P. A1 - Woodhouse, Jason Nicholas A1 - Schulz, Kai G. A1 - Brussaard, Corina P. D. A1 - Riebesell, Ulf A1 - Grossart, Hans-Peter T1 - Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions JF - Biogeosciences N2 - The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean. Y1 - 2017 U6 - https://doi.org/10.5194/bg-14-1-2017 SN - 1726-4170 SN - 1726-4189 VL - 14 IS - 1 SP - 1 EP - 15 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Spilling, Kristian A1 - Schulz, Kai G. A1 - Paul, Allanah J. A1 - Boxhammer, Tim A1 - Achterberg, Eric Pieter A1 - Hornick, Thomas A1 - Lischka, Silke A1 - Stuhr, Annegret A1 - Bermudez, Rafael A1 - Czerny, Jan A1 - Crawfurd, Kate A1 - Brussaard, Corina P. D. A1 - Grossart, Hans-Peter A1 - Riebesell, Ulf T1 - Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment JF - Biogeosciences N2 - About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient (similar to 370 mu atm) to high (similar to 1200 mu atm), were set up in mesocosm bags (similar to 55m(3)). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol Cm-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by similar to 7% in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was similar to 100 mmol C m(-2) day(-1), from which 75-95% was respired, similar to 1% ended up in the TPC (including export), and 5-25% was added to the DOC pool. During phase II, the respiration loss increased to similar to 100% of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95% of GPP) in the highest CO2 treatment. Bacterial production was similar to 30% lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification. Y1 - 2016 U6 - https://doi.org/10.5194/bg-13-6081-2016 SN - 1726-4170 SN - 1726-4189 VL - 13 SP - 6081 EP - 6093 PB - Copernicus CY - Göttingen ER -