TY - JOUR A1 - König, Tobias A1 - Santer, Svetlana T1 - Visualization of surface plasmon interference by imprinting intensity patterns on a photosensitive polymer JF - Nanotechnology N2 - We report on sub-wavelength structuring of photosensitive azo-containing polymer films induced by a surface plasmon interference intensity pattern. The two surface plasmon waves generated at neighboring nano-slits in the metal layer during irradiation interfere constructively, resulting in an intensity pattern with a periodicity three times smaller than the wavelength of the incoming light. The near field pattern interacts with the photosensitive polymer film placed above it, leading to a topography change which follows the intensity pattern exactly, resulting in the formation of surface relief gratings of a size below the diffraction limit. We analyze numerically and experimentally how the depth of the nano-slit alters the interference pattern of surface plasmons and find that the sub-wavelength patterning of the polymer surface could be optimized by modifying the geometry and the size of the nano-slit. Y1 - 2012 U6 - https://doi.org/10.1088/0957-4484/23/48/485304 SN - 0957-4484 VL - 23 IS - 48 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Titov, Evgenii A1 - Lysyakova, Liudmila A1 - Lomadze, Nino A1 - Kabashin, Andrei V. A1 - Saalfrank, Peter A1 - Santer, Svetlana T1 - Thermal Cis-to-Trans Isomerization of Azobenzene-Containing Molecules Enhanced by Gold Nanoparticles: An Experimental and Theoretical Study JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - We report on the experimental and theoretical investigation of a considerable increase in the rate for thermal cis -> trans isomerization of azobenzene-containing molecules in the presence of gold nanopartides. Experimentally, by means of UV vis spectroscopy, we studied a series of azobenzene-containing surfactants and 4-nitroazobenzene. We found that in the presence of gold,nanoparticles the thermal lifetime of the cis isomer of the azobenzenecontaining molecules was decreased by up to 3 orders of magnitude in comparison to the lifetime in solution without nanoparticles. The electron transfer between azobenzene-containing molecules and a surface of gold nanopartides is a possible reason to promote the thermal cis trans switching. To investigate the effect of electron attachment to, and withdrawal from, the azobenzene-containing molecules on the isomerization rate, we performed density functional theory calculations of activation energy barriers of the reaction together with Eyring's transition state theory calculations of the rates for azobenzene derivatives with donor and acceptor groups in para position of one of the phenyl rings, as well as for one of the azobenzene-containing surfactants. We found that activation barriers are greatly lowered for azobenzene-containing molecules, both upon electron attachment and withdrawal, which leads, in turn, to a dramatic increase in the thermal isomerization rate. Y1 - 2015 U6 - https://doi.org/10.1021/acs.jpcc.5b02473 SN - 1932-7447 VL - 119 IS - 30 SP - 17369 EP - 17377 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Rumyantsev, Artem M. A1 - Santer, Svetlana A1 - Kramarenko, Elena Yu. T1 - Theory of collapse and overcharging of a polyelectrolyte microgel induced by an oppositely charged surfactant JF - Macromolecules : a publication of the American Chemical Society N2 - We report on the theoretical study of interaction of ionic surfactants with oppositely charged microgel particles in dilute solutions. Two approaches are proposed. Within the first approach, the micellization of the surfactants inside the microgel is taken into account while the second model focuses on the hydrophobic interactions of the surfactant tails with the hydrophobic parts of microgel subchains. It has been shown that microgels effectively absorb surfactant ions. At low surfactant concentration this absorption is realized due to an ion exchange between microgel counterions and surfactant ions. The ion exchange is significantly affected by the amount of the microgel counterions initially trapped within the microgel particles which depends on the size of the microgel, its ionization degree, cross-linking density as well as polymer concentration in the solution. Increase of the surfactant concentration causes contraction of the microgels, which can be realized as either a continuous shrinking or a jump-like collapse transition depending on the system parameters. In the collapsed state additional absorption of surfactants by microgels takes place due to an energy gain from micellization or hydrophobic interactions. This leads to microgel precipitation and successive microgel overcharging at an excess of the surfactant in the solution. The theoretical results are compared with the existing experimental data, in particular, on photosensitive surfactant/microgel complexes. Y1 - 2014 U6 - https://doi.org/10.1021/ma500637d SN - 0024-9297 SN - 1520-5835 VL - 47 IS - 15 SP - 5388 EP - 5399 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Malyar, Ivan V. A1 - Santer, Svetlana A1 - Stetsyura, Svetlana V. T1 - The effect of illumination on the parameters of the polymer layer deposited from solution onto a semiconductor substrate JF - Technical physics letters : letters to the Russian journal of applied physics N2 - The effect of illumination on the thickness and roughness of monolayers of polycationic molecules of polyethyleneimine deposited from solution onto a silicon substrate was discovered and investigated. The super-bandgap illumination of the substrate during polyethyleneimine adsorption causes a decrease in both the roughness and integral thickness of the organic layer on n- and p-Si substrates. Y1 - 2013 U6 - https://doi.org/10.1134/S1063785013070183 SN - 1063-7850 VL - 39 IS - 7 SP - 656 EP - 659 PB - Pleiades Publ. CY - New York ER - TY - JOUR A1 - Schlemmer, Christian A1 - Betz, Wolfgang A1 - Berchtold, Bernd A1 - Rühe, Jürgen A1 - Santer, Svetlana T1 - The design of thin polymer membranes filled with magnetic particles on a microstructured silicon surface N2 - In this paper we present the fabrication and characterization of polymer nanomembranes filled with magnetic nanoparticles and attached covalently to a periodic array of free-standing silicon walls, forming an array of micro- channels with the membrane as a cover. The width of a micro-channel of about 1.4 mu m sets a characteristic lateral size and the thickness of the polymer membrane ranges between 100 and 300 nm. The membrane is made of cross-linked hydrophilic polymers possessing a Young's modulus of only a few MPa. The presence of the magnetic particles within the membrane makes the film responsive to external magnetic fields. The mechanical and magnetic properties of the membrane are characterized by bulge tests and with atomic force microscopy. Y1 - 2009 UR - http://iopscience.iop.org/0957-4484/ U6 - https://doi.org/10.1088/0957-4484/20/25/255301 SN - 0957-4484 ER - TY - JOUR A1 - Moradi, N. A1 - Zakrevskyy, Yuriy A1 - Javadi, A. A1 - Aksenenko, E. V. A1 - Fainerman, V. B. A1 - Lomadze, Nino A1 - Santer, Svetlana A1 - Miller, R. T1 - Surface tension and dilation rheology of DNA solutions in mixtures with azobenzene-containing cationic surfactant JF - Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects N2 - The surface tension and dilational surface visco-elasticity of the individual solutions of the biopolymer DNA and the azobenzene-containing cationic surfactant AzoTAB, as well as their mixtures were measured using the drop profile analysis tensiometry. The negatively charged DNA molecules form complexes with the cationic surfactant AzoTAB. Mixed DNA + AzoTAB solutions exhibit high surface activity and surface layer elasticity. Extremes in the dependence of these characteristics on the AzoTAB concentration exist within the concentration range of 3 x 10(-6)-5 x 10(-5) M. The surface tension of the mixture shows a minimum with a subsequent maximum. In the same concentration range the elasticity shows first a maximum and then a subsequent minimum. A recently developed thermodynamic model was modified to account for the dependence of the adsorption equilibrium constant of the adsorbed complex on the cationic surfactant concentration. This modified theory shows good agreement with the experimental data both for the surface tension and the elasticity values over the entire range of studied AzoTAB concentrations. (C) 2016 Elsevier B.V. All rights reserved. KW - Mixed adsorption layers KW - Polymer/surfactant interaction KW - Water/air interface KW - Thermodynamics of adsorption KW - Dilational rheology KW - Drop profile analysis tensiometry Y1 - 2016 U6 - https://doi.org/10.1016/j.colsurfa.2016.04.021 SN - 0927-7757 SN - 1873-4359 VL - 505 SP - 186 EP - 192 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - König, Tobias A1 - Sekhar, Y. Nataraja A1 - Santer, Svetlana T1 - Surface plasmon nanolithography impact of dynamically varying near-field boundary conditions at the air-polymer interface JF - Journal of materials chemistry N2 - It is well-known that surface plasmon generated near fields of suitably irradiated metal nano-structures can induce a patterning in an azobenzene-modified photosensitive polymer film placed on top. The change in the topography usually follows closely and permanently the underlying near field intensity pattern. With this approach, one can achieve a multitude of morphologies by additionally changing light intensity, polarization and the kind of metal used for nano-structuring. In this paper, we demonstrate that below a critical value of the polymer film thickness, the receding polymer material induces a change in refractive index of the glass-metal-polymer system, modifying the near field intensity distribution and causing a back-reaction on the flow of polymer material. This has a profound influence on the smallest size of topographical features that can be imprinted into the polymer. Y1 - 2012 U6 - https://doi.org/10.1039/c2jm15864g SN - 0959-9428 VL - 22 IS - 13 SP - 5945 EP - 5950 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Yadavalli, Nataraja Sekhar A1 - Saphiannikova, Marina A1 - Lomadze, Nino A1 - Goldenberg, Leonid M. A1 - Santer, Svetlana T1 - Structuring of photosensitive material below diffraction limit using far field irradiation JF - Applied physics : A, Materials science & processing N2 - In this paper, we report on in-situ atomic force microscopy (AFM) studies of topographical changes in azobenzene-containing photosensitive polymer films that are irradiated with light interference patterns. We have developed an experimental setup consisting of an AFM combined with two-beam interferometry that permits us to switch between different polarization states of the two interfering beams while scanning the illuminated area of the polymer film, acquiring corresponding changes in topography in-situ. This way, we are able to analyze how the change in topography is related to the variation of the electrical field vector within the interference pattern. It is for the first time that with a rather simple experimental approach a rigorous assignment can be achieved. By performing in-situ measurements we found that for a certain polarization combination of two interfering beams [namely for the SP (a dagger center dot, a dagger") polarization pattern] the topography forms surface relief grating with only half the period of the interference patterns. Exploiting this phenomenon we are able to fabricate surface relief structures with characteristic features measuring only 140 nm, by using far field optics with a wavelength of 491 nm. We believe that this relatively simple method could be extremely valuable to, for instance, produce structural features below the diffraction limit at high-throughput, and this could significantly contribute to the search of new fabrication strategies in electronics and photonics industry. Y1 - 2013 U6 - https://doi.org/10.1007/s00339-013-7945-3 SN - 0947-8396 SN - 1432-0630 VL - 113 IS - 2 SP - 263 EP - 272 PB - Springer CY - New York ER - TY - JOUR A1 - König, Tobias A1 - Santer, Svetlana T1 - Stretching and distortion of a photosensitive polymer film by surface plasmon generated near fields in the vicinity of a nanometer sized metal pin hole JF - Nanotechnology N2 - Here we demonstrate how a surface plasmon (SP) generated near field pattern in the vicinity of a nano-scale pin hole can be used to generate reversible topography changes in a photosensitive polymer film above the opening. This can be achieved by simply changing the polarization state of the plasmon generating incoming light. In the case of linear polarization, the near field intensity pattern causes the film to laterally expand/contract according to the direction of the polarization. For circular polarization, two pronounced rims corresponding to maxima in the topography are observed. In all cases, the topographical variation is in close agreement with the SP intensity distribution computed from finite difference time domain simulation. Our results demonstrate the versatility of using SP near fields to imprint a variety of structures into photosensitive polymer films using only a single metallic mask. Y1 - 2012 U6 - https://doi.org/10.1088/0957-4484/23/15/155301 SN - 0957-4484 VL - 23 IS - 15 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Silanteva, Irina A. A1 - Komolkin, Andrei A1 - Mamontova, Veronika V. A1 - Vorontsov-Velyaminov, Pavel N. A1 - Santer, Svetlana A1 - Kasyanenko, Nina A. T1 - Some features of surfactant organization in DNA solutions at various NaCl concentrations JF - ACS omega / American Chemical Society N2 - The photosensitive azobenzene-containing surfactant C-4-Azo-OC(6)TMAB is a promising agent for reversible DNA packaging in a solution. The simulation of the trans-isomer surfactant organization into associates in a solution with and without salt as well as its binding to DNA at different NaCl concentrations was carried out by molecular dynamics. Experimental data obtained by spectral and hydrodynamic methods were used to verify the results of simulation. It was shown that head-to-tail aggregates with close to antiparallel orientation of surfactant molecules were formed at certain NaCl and surfactant concentrations (below critical micelle concentration). Such aggregates have two positively charged ends, and therefore, they can be attracted to negatively charged DNA phosphates far located along the chain, as well as those that belong to different molecules. This contributes to the formation of intermolecular DNA-DNA contacts, and this way, the experimentally observed precipitation of DNA can be explained. Y1 - 2020 U6 - https://doi.org/10.1021/acsomega.0c01850 SN - 2470-1343 VL - 5 IS - 29 SP - 18234 EP - 18243 PB - ACS Publications CY - Washington ER - TY - JOUR A1 - Jelken, Joachim A1 - Henkel, Carsten A1 - Santer, Svetlana T1 - Solving an old puzzle: fine structure of diffraction spots from an azo-polymer surface relief grating JF - Applied physics : B, Lasers and optics N2 - We report on the experimental and theoretical interpretation of the diffraction of a probe beam during inscription of a surface relief grating with an interference pattern into a photo-responsive polymer film. For this, we developed a set-up allowing for the simultaneous recording of the diffraction efficiency (DE), the fine structure of the diffraction spot and the topographical changes, in situ and in real time while the film is irradiated. The time dependence of the DE, as the surface relief deepens, follows a Bessel function exhibiting maxima and minima. The size of the probe beam relative to the inscribed grating (i.e., to the size of the writing beams) matters and has to be considered for the interpretation of the DE signal. It is also at the origin of a fine structure within the diffraction spot where ring-shaped features appear once an irradiation time corresponding to the first maximum of the DE has been exceeded. Y1 - 2019 U6 - https://doi.org/10.1007/s00340-019-7331-8 SN - 0946-2171 SN - 1432-0649 VL - 125 IS - 11 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Yadavalli, Nataraja Sekhar A1 - Linde, Felix A1 - Kopyshev, Alexey A1 - Santer, Svetlana T1 - Soft matter beats hard matter - rupturing of thin metallic films induced by mass transport in photosensitive polymer films JF - ACS applied materials & interfaces N2 - The interface between thin films of metal and polymer materials play a significant role in modern flexible microelectronics viz., metal contacts on polymer substrates, printed electronics and prosthetic devices. The major emphasis in metal polymer interface is on studying how the externally applied stress in the polymer substrate leads to the deformation and cracks in metal film and vice versa. Usually, the deformation process involves strains varying over large lateral dimensions because of excessive stress at local imperfections. Here we show that the seemingly random phenomena at macroscopic scales can be rendered rather controllable at submicrometer length scales. Recently, we have created a metal polymer interface system with strains varying over periods of several hundred nanometers. This was achieved by exploiting the formation of surface relief grating (SRG) within the azobenzene containing photosensitive polymer film upon irradiation with light interference pattern. Up to a thickness of 60 nm, the adsorbed metal film adapts neatly to the forming relief, until it ultimately ruptures into an array of stripes by formation of highly regular and uniform cracks along the maxima and minima of the polymer topography. This surprising phenomenon has far-reaching implications. This is the first time a direct probe is available to estimate the forces emerging in SRG formation in glassy polymers. Furthermore, crack formation in thin metal films can be studied literally in slow motion, which could lead to substantial improvements in the design process of flexible electronics. Finally, cracks are produced uniformly and at high density, contrary to common sense. This could offer new strategies for precise nanofabrication procedures mechanical in character. KW - metal/polymer interface KW - rupturing of metal film KW - forces generated during surface relief grating formation KW - in situ atomic force microscopy KW - azobenzene KW - two beam interferometry Y1 - 2013 U6 - https://doi.org/10.1021/am4006132w SN - 1944-8244 VL - 5 IS - 16 SP - 7743 EP - 7747 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Filimon, Marlena A1 - Kopf, Ilona A1 - Ballout, Fuad A1 - Schmidt, Dietrich A. A1 - Bruendermann, Erik A1 - Rühe, Jürgen A1 - Santer, Svetlana A1 - Havenith, Martina T1 - Smart polymer surfaces : mapping chemical landscapes on the nanometre scale N2 - We show that Scattering Infrared Near-field Microscopy (SNIM) allows chemical mapping of polymer monolayers that can serve as designed nanostructured surfaces with specific surface chemistry properties on a nm scale. Using s- SNIM a minimum volume of 100 nm x 100 nm x 15 nm is sufficient for a recording of a "chemical'' IR signature which corresponds to an enhancement of at least four orders of magnitudes compared to conventional FT-IR microscopy. We could prove that even in cases where it is essentially difficult to distinguish between distinct polymer compositions based solely on topography, nanophase separated polymers can be clearly distinguished according to their characteristic near-field IR response. Y1 - 2010 UR - http://www.rsc.org/Publishing/Journals/sm/index.asp U6 - https://doi.org/10.1039/C0sm00098a SN - 1744-683X ER - TY - JOUR A1 - Simonova, Maria A1 - Ivanov, Ivan A1 - Meleshko, Tamara A1 - Kopyshev, Alexey A1 - Santer, Svetlana A1 - Yakimansky, Alexander A1 - Filippov, Alexander T1 - Self-assembly of molecular brushes with polyimide backbone and amphiphilic block copolymer side chains in selective solvents JF - Polymers N2 - Three-component molecular brushes with a polyimide backbone and amphiphilic block copolymer side chains with different contents of the "inner" hydrophilic (poly(methacrylic acid)) and "outer" hydrophobic (poly(methyl methacrylate)) blocks were synthesized and characterized by molecular hydrodynamics and optics methods in solutions of chloroform, dimethylformamide, tetrahydrofuran and ethanol. The peculiarity of the studied polymers is the amphiphilic structure of the grafted chains. The molar masses of the molecular brushes were determined by static and dynamic light scattering in chloroform in which polymers form molecularly disperse solutions. Spontaneous self-assembly of macromolecules was detected in dimethylformamide, tetrahydrofuran and ethanol. The aggregates size depended on the thermodynamic quality of the solvent as well as on the macromolecular architectural parameters. In dimethylformamide and tetrahydrofuran, the distribution of hydrodynamic radii of aggregates was bimodal, while in ethanol, it was unimodal. Moreover, in ethanol, an increase in the poly(methyl methacrylate) content caused a decrease in the hydrodynamic radius of aggregates. A significant difference in the nature of the blocks included in the brushes determines the selectivity of the used solvents, since their thermodynamic quality with respect to the blocks is different. The macromolecules of the studied graft copolymers tend to self-organization in selective solvents with formation of a core-shell structure with an insoluble solvophobic core surrounded by the solvophilic shell of side chains. KW - molecular brushes KW - amphiphilic side chains KW - molecular hydrodynamics and KW - optics KW - conformational and hydrodynamic characteristics KW - aggregation Y1 - 2020 U6 - https://doi.org/10.3390/polym12122922 SN - 2073-4360 VL - 12 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Yadavalli, Nataraja Sekhar A1 - König, Tobias A1 - Santer, Svetlana T1 - Selective mass transport of azobenzene-containing photosensitive films towards or away from the light intensity JF - Journal of the Society for Information Display N2 - Here, we report on two photosensitive amorphous polymers showing opposite behavior upon exposure to illumination. The first polymer (PAZO) consists of linear backbone to which azobenzene-containing side chains are covalently attached, while in the second polymer (azo-PEI), the azobenzene side chains are attached ionically to a polyelectrolyte backbone. When irradiated through a mask, the PAZO goes away from the intensity maxima, leaving behind topography trenches, while the direction of the mass transport of the azo-PEI polymer points towards the intensity maxima. This kind of behavior has been reported only for certain liquid crystalline polymers that exhibit in-phase reaction on illumination, that is, topography maxima coincides with the intensity maxima. Furthermore, flat nanocrystals placed on top of azo-PEI film was found to be moved together with the mass transport of the underlying polymer film as visualized using in situ atomic force microscopy (AFM) measurements. It was also demonstrated that the two polymer films respond differently on irradiation with the polarization and intensity interference patterns (IPs). To record the kinetic of the surface relief grating formation within two polymers during irradiation with different IPs, we utilized a homemade setup combining the optical part for the generation of IP and AFM. A possible mechanism explaining different responses on the irradiation of amorphous polymers is discussed in the frame of a theoretical model proposed by Saphiannikova et al. (J. Phys. Chem. B 113, 5032-5045 (2009)). KW - azobenzene KW - surface relief grating KW - light-induced mass transport KW - interference pattern KW - nano-object motion Y1 - 2015 U6 - https://doi.org/10.1002/jsid.306 SN - 1071-0922 SN - 1938-3657 VL - 23 IS - 4 SP - 154 EP - 162 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Koenig, Tobias A1 - Goldenberg, Leonid M. A1 - Kulikovska, Olga A1 - Kulikovsky, Lazar A1 - Stumpe, Joachim A1 - Santer, Svetlana T1 - Reversible structuring of photosensitive polymer films by surface plasmon near field radiation JF - Soft matter N2 - We report on the fabrication and characterisation of a novel type of hybrid azo-modified photosensitive polymer film with a nanoscale metallic structuring integrated into the substrate. The metal structures permit to generate surface plasmon near fields when irradiated by UV-light from the rear without directly illuminating the polymer. This allows establishment of a localized, complex-shape intensity distribution at sub-wavelength resolution with a corresponding impact on the photosensitive polymer. The possibilities of exploiting this setup are manifold. We find that just by using the change of polarization of the incident light as means of control, the topography can be driven to change between various patterns reversibly. These results are confirmed by numerical simulations and compared with in situ recorded topography changes. Y1 - 2011 U6 - https://doi.org/10.1039/c0sm01164a SN - 1744-683X VL - 7 IS - 9 SP - 4174 EP - 4178 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Frenkel, Mark A1 - Arya, Pooja A1 - Bormashenḳo, Edṿard A1 - Santer, Svetlana T1 - Quantification of ordering in active light driven colloids JF - Journal of colloid and interface science N2 - Hypothesis: Light driven diffusioosmosis allows for the controlled self-assembly of colloidal particles. Illuminating of colloidal suspensions built of nanoporous silica microspheres dispersed in aqueous solution containing photosensitive azobenzene cationic surfactant enables manufacturing self-assembled well-ordered 2D colloidal patterns. We conjectured that ordering in this patterns may be quantified with the Voronoi entropy. Experiments: Depending on the isomerization state the surfactant either tends to absorb (trans-state) into negatively charged pores or diffuse out (cis-isomer) of the particles generating an excess concentration near the colloids outer surface and thus resulting in the initiation of diffusioosmotic flow. The direction of the flow can be controlled by the wavelength and intensity of irradiation. Under irradiations with blue light the colloids separate within a few seconds forming equidistant particle ensemble where long range diffusioosmotic repulsion acts over distances exceeding several times the particle diameter. Hierarchy of ordering in the studied colloidal systems is distinguished, namely: i) ordering of individual separated colloidal particles; ii) ordering of clusters built of colloidal particles; iii) ordering within clusters of individual colloidal particles. Findings: The study of the temporal change in the Voronoi entropy for the light illuminated colloidal dispersions allowed quantification of ordering evolution on different lateral scales and under different irradiation conditions. Fourier analysis of the time evolution of the Voronoi entropy is presented. Fourier spectrum of the "small-area" (100 x 100 mu m) reveals the pronounced peak at f = 1.125 Hz reflecting the oscillations of individual particles at this frequency. Ordering in hierarchical colloidal system emerging on different lateral scales is addressed. The minimal Voronoi entropy is intrinsic for the close packed 2D clusters. (C) 2020 Published by Elsevier Inc. KW - Azobenzene containing cationic surfactants KW - Light induced diffusioosmotic flow KW - 2D colloid ordering KW - Voronoi entropy Y1 - 2021 U6 - https://doi.org/10.1016/j.jcis.2020.10.053 SN - 0021-9797 SN - 1095-7103 VL - 586 SP - 866 EP - 875 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Yadavalli, Nataraja Sekhar A1 - Korolkov, Denis A1 - Moulin, Jean-Francois A1 - Krutyeva, Margarita A1 - Santer, Svetlana T1 - Probing opto-mechanical stresses within azobenzene-containing photosensitive polymer films by a thin metal film placed above JF - ACS applied materials & interfaces N2 - Azo-modified photosensitive polymers offer the interesting possibility to reshape bulk polymers and thin films by UV-irradiation while being in the solid glassy state. The polymer undergoes considerable mass transport under irradiation with a light interference pattern resulting in the formation of surface relief grating (SRG). The forces inscribing this SRG pattern into a thin film are hard to assess experimentally directly. In the current study, we are proposing a method to probe opto-mechanical stresses within polymer films by characterizing the mechanical response of thin metal films (10 nm) deposited on the photosensitive polymer. During irradiation, the metal film not only deforms along with the SRG formation but ruptures in a regular and complex manner. The morphology of the cracks differs strongly depending on the electrical field distribution in the interference pattern, even when the magnitude and the kinetics of the strain are kept constant. This implies a complex local distribution of the opto-mechanical stress along the topography grating. In addition, the neutron reflectivity measurements of the metal/polymer interface indicate the penetration of a metal layer within the polymer, resulting in a formation of a bonding layer that confirms the transduction of light-induced stresses in the polymer layer to a metal film. KW - surface relief grating KW - opto-mechanical stresses KW - bonding layer at the metal/polymer interface KW - rupturing of metal film KW - metal/multilayered graphene/polymer interfaces KW - azobenzene Y1 - 2014 U6 - https://doi.org/10.1021/am501870t SN - 1944-8244 VL - 6 IS - 14 SP - 11333 EP - 11340 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kopyshev, Alexey A1 - Galvin, Casey J. A1 - Genzer, Jan A1 - Lomadze, Nino A1 - Santer, Svetlana T1 - Polymer brushes modified by photosensitive azobenzene containing polyamines JF - Polymer : the international journal for the science and technology of polymers N2 - This paper describes a strategy for preparing photosensitive polymeric grafts on flat solid surfaces by loading diblock-copolymer or homopolymer brushes with cationic azobenzene-containing surfactants. In contrast to previous work, we utilize photosensitive surfactants that bear positively-charged polyamine head groups whose charge varies between 1(+) and 3(+). Poly(methylmethacrylate-b-methacrylic acid) (PMMA-b-PMAA) brushes were prepared by employing atom transfer radical polymerization, where the bottom poly(methyl methacrylate) block was grown first followed by the synthesis of t-butyl methacrylate block that after de-protection yielded poly(methacrylic acid). We used PMMA-b-PMAA brushes with constant grafting density and length of the PMMA block, and three different lengths of the PMAA block. The azobenzene-based surfactants attached only to the PMAA block. The degree of binding (i.e., the number of surfactant molecules per binding site on the brush backbone) of the surfactants to the brush depends strongly on the valence of the surfactant head-group; within the brushes the concentration of the surfactant carrying unit charge is larger than that of multivalent surfactants. We detect pronounced response of the brush topography on irradiation with UV interference pattern even at very low degree of binding (as small as 0.08) of multi-valence surfactant. Areas on the sample that receive the highest UV dose exhibit chain scission. By removing the ruptured chains from the substrate via good solvent, one uncovers a surface topographical relief grating, whose spatial arrangement follows the intensity distribution of the UV light on the sample during irradiation. Due to strong coupling of the multi-valence surfactants to the polymer brush, it was possible in some cases to completely remove the polyelectrolyte block from the PMMA layer. The application of multi-valence azobenzene surfactants for triggering brush photosensitive has important advantage over usage of surfactant with unit charge because relative to single-valence surfactants much lower concentrations of the multivalent surfactant are needed to achieve comparable response upon UV irradiation. (C) 2016 Elsevier Ltd. All rights reserved. KW - Photosensitive brushes KW - Photosensitive azobenzene containing polyamines Y1 - 2016 U6 - https://doi.org/10.1016/j.polymer.2016.03.050 SN - 0032-3861 SN - 1873-2291 VL - 98 SP - 421 EP - 428 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - DiFlorio, Giuseppe A1 - Bründermann, Erik A1 - Yadavall, Nataraja Sekhar A1 - Santer, Svetlana A1 - Havenith, Martina T1 - Polarized 3D Raman and nanoscale near-field optical microscopy of optically inscribed surface relief gratings: chromophore orientation in azo-doped polymer films N2 - We have used polarized confocal Raman microspectroscopy and scanning near-field optical microscopy with a resolution of 60 nm to characterize photoinscribed grating structures of azobenzene doped polymer films on a glass support. Polarized Raman microscopy allowed determining the reorientation of the chromophores as a function of the grating phase and penetration depth of the inscribing laser in three dimensions. We found periodic patterns, which are not restricted to the surface alone, but appear also well below the surface in the bulk of the material. Near-field optical microscopy with nanoscale resolution revealed lateral two-dimensional optical contrast, which is not observable by atomic force and Raman microscopy. Y1 - 2014 UR - http://pubs.rsc.org/en/content/articlepdf/2014/sm/c3sm51787j U6 - https://doi.org/10.1039/c3sm51787j SN - 1744-683x ER -