TY - JOUR A1 - Seehafer, Norbert A1 - Galanti, B. A1 - Feudel, Fred A1 - Rüdiger, Sten T1 - Symmetry breaking bifurcations for the magnetohydrodynamic equations with helical forcing Y1 - 1996 ER - TY - JOUR A1 - Feudel, Fred A1 - Seehafer, Norbert A1 - Rüdiger, Sten T1 - Symmetry breaking bifurcations for the magnetohydrodynamic equations with helical forcing JF - Preprint NLD Y1 - 1996 VL - 31 PB - Univ. CY - Potsdam ER - TY - JOUR A1 - Feudel, Fred A1 - Gellert, Marcus A1 - Rüdiger, Sten A1 - Witt, Annette A1 - Seehafer, Norbert T1 - Dynamo effect in a driven helical flow Y1 - 2003 UR - http://link.aps.org/abstract/PRE/v68/e046302 ER - TY - JOUR A1 - Rüdiger, Sten A1 - Feudel, Fred A1 - Seehafer, Norbert T1 - Dynamo bifurcations in an array of driven convectionlike rolls Y1 - 1998 ER - TY - JOUR A1 - Feudel, Fred A1 - Rüdiger, Sten A1 - Seehafer, Norbert T1 - Bifurcation phenomena and dynamo effect in electrically conducting fluids N2 - Electrically conducting fluids in motion can act as self-excited dynamos. The magnetic fields of celestial bodies like the Earth and the Sun are generated by such dynamos. Their theory aims at modeling and understanding both the kinematic and dynamic aspects of the underlying processes. Kinematic dynamo models, in which for a prescribed flow the linear induction equation is solved and growth rates of the magnetic field are calculated, have been studied for many decades. But in order to get consistent models and to take into account the back-reaction of the magnetic field on the fluid motion, the full nonlinear system of the magnetohydrodynamic (MHD) equations has to be studied. It is generally accepted that these equations, i.e. the Navier-Stokes equation (NSE) and the induction equation, provide a theoretical basis for the explanation of the dynamo effect. The general idea is that mechanical energy pumped into the fluid by heating or other mechanisms is transferred to the magnetic field by nonlinear interactions. For two special helical flows which are known to be effective kinematic dynamos and which can be produced by appropriate external mechanical forcing, we review the nonlinear dynamo properties found in the framework of the full MHD equations. Specifically, we deal with the ABC flow (named after Arnold, Beltrami and Childress) and the Roberts flow (after G.~O. Roberts). The appearance of generic dynamo effects is demonstrated. Applying special numerical bifurcation-analysis techniques to high-dimensional approximations in Fourier space and varying the Reynolds number (or the strength of the forcing) as the relevant control parameter, qualitative changes in the dynamics are investigated. We follow the bifurcation sequences until chaotic states are reached. The transitions from the primary flows with vanishing magnetic field to dynamo-active states are described in particular detail. In these processes the stagnation points of the flows and their heteroclinic connections play a promoting role for the magnetic field generation. By the example of the Roberts flow we demonstrate how the break up of the heteroclinic lines after the primary bifurcation leads to a complicated intersection of stable and unstable manifolds forming a chaotic web which is in turn correlated with the spatial appearance of the dynamo. Y1 - 2001 ER -