TY - JOUR A1 - Prestel, Andreas A1 - Möller, Heiko Michael T1 - Spatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides JF - Chemical communications N2 - The selective uptake of compounds into specific cells of interest is a major objective in cell biology and drug delivery. By incorporation of a novel, thermostable azobenzene moiety we generated peptides that can be switched optically between an inactive state and an active, cell-penetrating state with excellent spatio-temporal control. Y1 - 2016 U6 - https://doi.org/10.1039/c5cc06848g SN - 1359-7345 SN - 1364-548X VL - 52 SP - 701 EP - 704 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Prestel, Andreas A1 - Möller, Heiko Michael T1 - Spatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides JF - Chemical communications : ChemComm N2 - The selective uptake of compounds into specific cells of interest is a major objective in cell biology and drug delivery. By incorporation of a novel, thermostable azobenzene moiety we generated peptides that can be switched optically between an inactive state and an active, cell-penetrating state with excellent spatio-temporal control. Y1 - 2015 U6 - https://doi.org/10.1039/C5CC06848G SN - 1364-548X IS - 52 SP - 701 EP - 704 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kastl, Johanna A1 - Braun, Joachim A1 - Prestel, Andreas A1 - Möller, Heiko Michael A1 - Huhn, Thomas A1 - Mayer, Thomas U. T1 - Mad2 Inhibitor-1 (M2I-1): A Small Molecule Protein-Protein Interaction Inhibitor Targeting the Mitotic Spindle Assembly Checkpoint JF - ACS chemical biology N2 - The genetic integrity of each organism depends on the faithful segregation of its genome during mitosis. To meet this challenge, a cellular surveillance mechanism, termed the spindle assembly checkpoint (SAC), evolved that monitors the correct attachment of chromosomes and blocks progression through mitosis if corrections are needed. While the central role of the SAC for genome integrity is well established, its functional dissection has been hampered by the limited availability of appropriate small molecule inhibitors. Using a fluorescence polarization-based screen, we identify Mad2 inhibitor-1 (M2I-1), the first small molecule inhibitor targeting the binding of Mad2 to Cdc20, an essential protein-protein interaction (PPI) within the SAC. Based on computational and biochemical analyses, we propose that M2I-1 disturbs conformational dynamics of Mad2 critical for complex formation with Cdc20. Cellular studies revealed that M2I-1 weakens the SAC response, indicating that the compound might be active in cells. Thus, our study identifies the SAC specific complex formation between Mad2 and Cdc20 as a protein-protein interaction that can be targeted by small molecules. Y1 - 2015 U6 - https://doi.org/10.1021/acschembio.5b00121 SN - 1554-8929 SN - 1554-8937 VL - 10 IS - 7 SP - 1661 EP - 1666 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Holert, Johannes A1 - Yücel, Onur A1 - Jagmann, Nina A1 - Prestel, Andreas A1 - Möller, Heiko Michael A1 - Philipp, Bodo T1 - Identification of bypass reactions leading to the formation of one central steroid degradation intermediate in metabolism of different bile salts in Pseudomonas sp strain Chol1 JF - Environmental microbiology Y1 - 2016 U6 - https://doi.org/10.1111/1462-2920.13192 SN - 1462-2912 SN - 1462-2920 VL - 18 SP - 3373 EP - 3389 PB - Wiley-Blackwell CY - Hoboken ER -