TY - JOUR A1 - Bindi, Dino A1 - Kotha, Sreeram Reddy A1 - Weatherill, Graeme A1 - Lanzano, Giovanni A1 - Luzi, Lucia A1 - Cotton, Fabrice T1 - The pan-European engineering strong motion (ESM) flatfile BT - consistency check via residual analysis JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - We present the results of a consistency check performed over the flatfile extracted from the engineering strong motion (ESM) database. The flatfile includes 23,014 recordings from 2179 earthquakes in the magnitude range from 3.5 to 7.8 that occurred since the 1970s in Europe and Middle East, as presented in the companion article by Lanzano et al. (Bull Earthq Eng, 2018a). The consistency check is developed by analyzing different residual distributions obtained from ad-hoc ground motion prediction equations for the absolute spectral acceleration (SA), displacement and Fourier amplitude spectra (FAS). Only recordings from earthquakes shallower than 40 km are considered in the analysis. The between-event, between-station and event-and-station corrected residuals are computed by applying a mixed-effect regression. We identified those earthquakes, stations, and recordings showing the largest deviations from the GMPE median predictions, and also evaluated the statistical uncertainty on the median model to get insights on the applicable magnitude–distance ranges and the usable period (or frequency) range. We observed that robust median predictions are obtained up to 8 s for SA and up to 20 Hz for FAS, although median predictions for Mw ≥ 7 show significantly larger uncertainties with ‘bumps’ starting above 5 s for SA and below 0.3 Hz for FAS. The between-station variance dominates over the other residual variances, and the dependence of the between-station residuals on logarithm of Vs30 is well-described by a piece-wise linear function with period-dependent slopes and hinge velocity around 580 m/s. Finally, we compared the between-event residuals obtained by considering two different sources of moment magnitude. The results show that, at long periods, the between-event terms from the two regressions have a weak correlation and the overall between-event variability is dissimilar, highlighting the importance of magnitude source in the regression results. KW - Ground motion prediction equation KW - Residual analysis KW - European strong motion data Y1 - 2018 U6 - https://doi.org/10.1007/s10518-018-0466-x SN - 1570-761X SN - 1573-1456 VL - 17 IS - 2 SP - 583 EP - 602 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Lanzano, Giovanni A1 - Sgobba, Sara A1 - Luzi, Lucia A1 - Puglia, Rodolfo A1 - Pacor, Francesca A1 - Felicetta, Chiara A1 - Cotton, Fabrice A1 - Bindi, Dino T1 - The pan-European Engineering Strong Motion (ESM) flatfile BT - compilation criteria and data statistics JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - The Engineering Strong-Motion (ESM) flatfile is a parametric table which contains verified and reliable metadata and intensity measures of manually processed waveforms included in the ESM database. The flatfile has been developed within the Seismology Thematic Core Service of EPOS-IP (European Plate Observing System Implementation Phase) and it is disseminated throughout a web portal for research and technical purposes. The adopted criteria for flatfile compilation aim to collect strong motion data and related metadata in a uniform, updated, traceable and quality-checked way to develop Ground Motion Models (GMMs) for Probabilistic Seismic Hazard Assessment (PSHA) and engineering applications. In this paper, we present the characteristics of ESM flatfile in terms of recording, event and station distributions, and we discuss the most relevant features of the Intensity Measures (IMs) of engineering interest included in the table. The dataset for flatfile compilation includes 23,014 recordings from 2179 earthquakes and 2080 stations from Europe and Middle-East. The events are characterized by magnitudes in the range 3.5-8.0 and refer to different tectonics regimes, such as shallow active crustal and subduction zones. Intensity measures include peak and integral parameters and duration of each waveform. The spectral amplitudes of the (5% damping) acceleration and displacement response are provided for 36 periods, in the interval 0.01-10 s, as well as the 103 amplitudes of the Fourier spectrum for the frequency range 0.04-50 Hz. Several statistics are shown with reference to the most significant metadata for GMMs calibrations, such as moment magnitude, focal depth, several distance metrics, style of faulting and parameters for site characterization. Furthermore, we also compare and explain the most relevant differences between the metadata of ESM flatfile with those provided by the previous flatfile derived in RESORCE (Reference Database for Seismic Ground Motion in Europe) project. KW - Strong motion records KW - Flatfile KW - Metadata KW - GMMs KW - Engineering Strong Motion database Y1 - 2018 U6 - https://doi.org/10.1007/s10518-018-0480-z SN - 1570-761X SN - 1573-1456 VL - 17 IS - 2 SP - 561 EP - 582 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Douglas, John A1 - Akkar, Sinan A1 - Ameri, Gabriele A1 - Bard, Pierre-Yves A1 - Bindi, Dino A1 - Bommer, Julian J. A1 - Bora, Sanjay Singh A1 - Cotton, Fabrice A1 - Derras, Boumediene A1 - Hermkes, Marcel A1 - Kuehn, Nicolas Martin A1 - Luzi, Lucia A1 - Massa, Marco A1 - Pacor, Francesca A1 - Riggelsen, Carsten A1 - Sandikkaya, M. Abdullah A1 - Scherbaum, Frank A1 - Stafford, Peter J. A1 - Traversa, Paola T1 - Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - This article presents comparisons among the five ground-motion models described in other articles within this special issue, in terms of data selection criteria, characteristics of the models and predicted peak ground and response spectral accelerations. Comparisons are also made with predictions from the Next Generation Attenuation (NGA) models to which the models presented here have similarities (e.g. a common master database has been used) but also differences (e.g. some models in this issue are nonparametric). As a result of the differing data selection criteria and derivation techniques the predicted median ground motions show considerable differences (up to a factor of two for certain scenarios), particularly for magnitudes and distances close to or beyond the range of the available observations. The predicted influence of style-of-faulting shows much variation among models whereas site amplification factors are more similar, with peak amplification at around 1s. These differences are greater than those among predictions from the NGA models. The models for aleatory variability (sigma), however, are similar and suggest that ground-motion variability from this region is slightly higher than that predicted by the NGA models, based primarily on data from California and Taiwan. KW - Strong-motion data KW - Ground-motion models KW - Ground-motion prediction equations KW - Style of faulting KW - Site amplification KW - Aleatory variability KW - Epistemic uncertainty KW - Europe KW - Middle East Y1 - 2014 U6 - https://doi.org/10.1007/s10518-013-9522-8 SN - 1570-761X SN - 1573-1456 VL - 12 IS - 1 SP - 341 EP - 358 PB - Springer CY - Dordrecht ER -