TY - JOUR A1 - Sun, Fu A1 - Dong, Kang A1 - Osenberg, Markus A1 - Hilger, Andre A1 - Risse, Sebastian A1 - Lu, Yan A1 - Kamm, Paul H. A1 - Klaus, Manuela A1 - Markoetter, Henning A1 - Garcia-Moreno, Francisco A1 - Arlt, Tobias A1 - Manke, Ingo T1 - Visualizing the morphological and compositional evolution of the interface of InLi-anode|thio-LISION electrolyte in an all-solid-state Li-S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Dynamic and direct visualization of interfacial evolution is helpful in gaining fundamental knowledge of all-solid-state-lithium battery working/degradation mechanisms and clarifying future research directions for constructing next-generation batteries. Herein, in situ and in operando synchrotron X-ray tomography and energy dispersive diffraction were simultaneously employed to record the morphological and compositional evolution of the interface of InLi-anode|sulfide-solid-electrolyte during battery cycling. Compelling morphological evidence of interfacial degradation during all-solid-state-lithium battery operation has been directly visualized by tomographic measurement. The accompanying energy dispersive diffraction results agree well with the observed morphological deterioration and the recorded electrochemical performance. It is concluded from the current investigation that a fundamental understanding of the phenomena occurring at the solid-solid electrode|electrolyte interface during all-solid-state-lithium battery cycling is critical for future progress in cell performance improvement and may determine its final commercial viability. Y1 - 2018 U6 - https://doi.org/10.1039/c8ta08821g SN - 2050-7488 SN - 2050-7496 VL - 6 IS - 45 SP - 22489 EP - 22496 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Quan, Ting A1 - Haerk, Eneli A1 - Xu, Yaolin A1 - Ahmet, Ibbi A1 - Höhn, Christian A1 - Mei, Shilin A1 - Lu, Yan T1 - Unveiling the formation of solid electrolyte interphase and its temperature dependence in "Water-in-Salt" supercapacitors JF - ACS applied materials & interfaces N2 - "Water-in-salt" (WIS) electrolytes have emerged as an excellent superconcentrated ionic medium for high-power energy storage systems such as supercapacitors due to their extended working potential compared to the conventional dilute aqueous electrolyte. In this work, we have investigated the performance of WIS supercapacitors using hollow carbon nanoplates as electrodes and compared it to that based on the conventional "salt-in-water" electrolytes. Moreover, the potentiostatic electrochemical impedance spectroscopy has been employed to provide an insightful look into the charge transport properties, which also, for the first time, reveals the formation of a solid-electrolyte interphase (SEI and their temperature-dependent impedance for charge transfer and adsorption. Furthermore, the effect of temperature on the electrochemical performance of the WIS supercapacitors in the temperature range from 15 to 60 degrees C has been studied, which presents a gravimetric capacitance of 128 F g(-1) and a volumetric capacitance of 197.12 F cm(-3) at 55 degrees C compared to 87.5 F g(-1) and 134.75 F cm(-3) at 15 degrees C. The in-depth understanding about the formation of SEI layer and the electrochemical performance at different temperatures for WIS supercapacitors will assist the efforts toward designing better aqueous electrolytes for supercapacitors. KW - "water-in-salt" KW - supercapacitor KW - solid electrolyte interphase KW - electrochemical impedance spectroscopy KW - temperature effect Y1 - 2021 U6 - https://doi.org/10.1021/acsami.0c19506 SN - 1944-8244 SN - 1944-8252 VL - 13 IS - 3 SP - 3979 EP - 3990 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Walkowiak, Jacek A1 - Lu, Yan A1 - Gradzielski, Michael A1 - Zauscher, Stefan A1 - Ballauff, Matthias T1 - Thermodynamic analysis of the uptake of a protein in a spherical polyelectrolyte brush JF - Macromolecular rapid communications N2 - A thermodynamic study of the adsorption of Human Serum Albumin (HSA) onto spherical polyelectrolyte brushes (SPBs) by isothermal titration calorimetry (ITC) is presented. The SPBs are composed of a solid polystyrene core bearing long chains of poly(acrylic acid). ITC measurements done at different temperatures and ionic strengths lead to a full set of thermodynamicbinding constants together with the enthalpies and entropies of binding. The adsorption of HSA onto SPBs is described with a two-step model. The free energy of binding Delta Gb depends only weakly on temperature because of a marked compensation of enthalpy by entropy. Studies of the adsorbed HSA by Fourier transform infrared spectroscopy (FT-IR) demonstrate no significant disturbance in the secondary structure of the protein. The quantitative analysis demonstrates that counterion release is the major driving force for adsorption in a process where proteins become multivalent counterions of the polyelectrolyte chains upon adsorption. A comparison with the analysis of other sets of data related to the binding of HSA to polyelectrolytes demonstrates that the cancellation of enthalpy and entropy is a general phenomenon that always accompanies the binding of proteins to polyelectrolytes dominated by counterion release. KW - Spherical polyelectrolyte brushes KW - proteins KW - ITC KW - thermodynamics KW - enthalpy-entropy compensation (EEC) Y1 - 2019 U6 - https://doi.org/10.1002/marc.201900421 SN - 1022-1336 SN - 1521-3927 VL - 41 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Saeedi Garakani, Sadaf A1 - Xie, Dongjiu A1 - Khorsand Kheirabad, Atefeh A1 - Lu, Yan A1 - Yuan, Jiayin T1 - Template-synthesis of a poly(ionic liquid)-derived Fe1-xS/nitrogen-doped porous carbon membrane and its electrode application in lithium-sulfur batteries JF - Materials advances N2 - This study deals with the facile synthesis of Fe1-xS nanoparticle-containing nitrogen-doped porous carbon membranes (denoted as Fe1-xS/N-PCMs) via vacuum carbonization of hybrid porous poly(ionic liquid) (PIL) membranes, and their successful use as a sulfur host material to mitigate the shuttle effect in lithium-sulfur (Li-S) batteries. The hybrid porous PIL membranes as the sacrificial template were prepared via ionic crosslinking of a cationic PIL with base-neutralized 1,1 '-ferrocenedicarboxylic acid, so that the iron source was molecularly incorporated into the template. The carbonization process was investigated in detail at different temperatures, and the chemical and porous structures of the carbon products were comprehensively analyzed. The Fe1-xS/N-PCMs prepared at 900 degrees C have a multimodal pore size distribution with a satisfactorily high surface area and well-dispersed iron sulfide nanoparticles to physically and chemically confine the LiPSs. The sulfur/Fe1-xS/N-PCM composites were then tested as electrodes in Li-S batteries, showing much improved capacity, rate performance and cycle stability, in comparison to iron sulfide-free, nitrogen-doped porous carbon membranes. Y1 - 2021 U6 - https://doi.org/10.1039/d1ma00441g SN - 2633-5409 VL - 2 IS - 15 SP - 5203 EP - 5212 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Pan, Xuefeng A1 - Sarhan, Radwan Mohamed A1 - Kochovski, Zdravko A1 - Chen, Guosong A1 - Taubert, Andreas A1 - Mei, Shilin A1 - Lu, Yan T1 - Template synthesis of dual-functional porous MoS2 nanoparticles with photothermal conversion and catalytic properties JF - Nanoscale N2 - Advanced catalysis triggered by photothermal conversion effects has aroused increasing interest due to its huge potential in environmental purification. In this work, we developed a novel approach to the fast degradation of 4-nitrophenol (4-Nip) using porous MoS2 nanoparticles as catalysts, which integrate the intrinsic catalytic property of MoS2 with its photothermal conversion capability. Using assembled polystyrene-b-poly(2-vinylpyridine) block copolymers as soft templates, various MoS 2 particles were prepared, which exhibited tailored morphologies (e.g., pomegranate-like, hollow, and open porous structures). The photothermal conversion performance of these featured particles was compared under near-infrared (NIR) light irradiation. Intriguingly, when these porous MoS2 particles were further employed as catalysts for the reduction of 4-Nip, the reaction rate constant was increased by a factor of 1.5 under NIR illumination. We attribute this catalytic enhancement to the open porous architecture and light-to-heat conversion performance of the MoS2 particles. This contribution offers new opportunities for efficient photothermal-assisted catalysis. Y1 - 2022 U6 - https://doi.org/10.1039/d2nr01040b SN - 2040-3372 VL - 14 IS - 18 SP - 6888 EP - 6901 PB - RSC Publ. (Royal Society of Chemistry) CY - Cambridge ER - TY - JOUR A1 - Khodeir, Miriam A1 - Ernould, Bruno A1 - Brassinne, Jeremy A1 - Ghiassinejad, Sina A1 - Jia, He A1 - Antoun, Sayed A1 - Friebe, Christian A1 - Schubert, Ulrich S. A1 - Kochovski, Zdravko A1 - Lu, Yan A1 - Van Ruymbeke, Evelyne A1 - Gohy, Jean-Francois T1 - Synthesis and characterisation of redox hydrogels based on stable nitroxide radicals JF - Soft matter N2 - The principle of encapsulation/release of a guest molecule from stimuli responsive hydrogels (SRHs) is mainly realised with pH, temperature or light stimuli. However, only a limited number of redox responsive hydrogels have been investigated so far. We report here the development of a SRH that can release its guest molecule upon a redox stimulus. To obtain this redox hydrogel, we have introduced into the hydrogel the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) stable nitroxide radical, which can be reversibly oxidized into an oxoammonium cation (TEMPO+). Water solubility is provided by the presence of the (oligoethyleneglycol)methacrylate (OEGMA) comonomer. Electrochemical and mechanical characterization showed that those gels exhibit interesting physicochemical properties, making them very promising candidates for practical use in a wide range of applications. Y1 - 2019 U6 - https://doi.org/10.1039/c9sm00905a SN - 1744-683X SN - 1744-6848 VL - 15 IS - 31 SP - 6418 EP - 6426 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zhao, Yuhang A1 - Sarhan, Radwan Mohamed A1 - Eljarrat, Alberto A1 - Kochovski, Zdravko A1 - Koch, Christoph A1 - Schmidt, Bernd A1 - Koopman, Wouter-Willem Adriaan A1 - Lu, Yan T1 - Surface-functionalized Au-Pd nanorods with enhanced photothermal conversion and catalytic performance JF - ACS applied materials & interfaces N2 - Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration. KW - Au-Pd nanorods KW - PDA KW - photothermal conversion KW - surface plasmon KW - 4-nitrophenol Y1 - 2022 U6 - https://doi.org/10.1021/acsami.2c00221 SN - 1944-8244 SN - 1944-8252 VL - 14 IS - 15 SP - 17259 EP - 17272 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Xie, Dongjiu A1 - Jouini, Oumeima A1 - Mei, Shilin A1 - Quan, Ting A1 - Xu, Yaolin A1 - Kochovski, Zdravko A1 - Lu, Yan T1 - Spherical polyelectrolyte brushes templated hollow C@MnO nanospheres as sulfur host materials for Li-S batteries JF - ChemNanoMat : Chemistry of Nanomaterials for Energy, Biology and More N2 - Li-S battery has been considered as the next-generation energy storage device, which still suffers from the shuttle effect of lithium polysulfides (LiPSs). In this work, mesoporous hollow carbon-coated MnO nanospheres (C@MnO) have been designed and synthesized using spherical polyelectrolyte brushes (SPB) as template, KMnO4 as MnO precursor, and polydopamine as carbon source to improve the electrochemical performance of Li-S battery. The hollow C@MnO nanospheres enable the combination of physical confinement and chemical adsorption of the LiPSs. The thin carbon coating layer can provide good electrical conductivity and additional physical confinement to polysulfides. Moreover, the encapsulated MnO inside the carbon shell exhibits strong chemical adsorption to polysulfides. The constructed C@MnO/S cathode shows the discharge capacity of 1026 mAh g(-1) at 0.1 C with 79% capacity retention after 80 cycles. The synthesized hollow C@MnO nanoparticles can work as highly efficient sulfur host materials, providing an effective solution to suppress the shuttle effect in Li-S battery. KW - hollow nanospheres KW - lithium-sulfur battery KW - manganese monoxide KW - sperical KW - polyelectrolyte brushes Y1 - 2022 U6 - https://doi.org/10.1002/cnma.202100455 SN - 2199-692X VL - 8 IS - 4 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Rothe, Martin A1 - Zhao, Yuhang A1 - Kewes, Günter A1 - Kochovski, Zdravko A1 - Sigle, Wilfried A1 - van Aken, Peter A. A1 - Koch, Christoph A1 - Ballauff, Matthias A1 - Lu, Yan A1 - Benson, Oliver T1 - Silver nanowires with optimized silica coating as versatile plasmonic resonators JF - Scientific reports N2 - Metal nanoparticles are the most frequently used nanostructures in plasmonics. However, besides nanoparticles, metal nanowires feature several advantages for applications. Their elongation offers a larger interaction volume, their resonances can reach higher quality factors, and their mode structure provides better coupling into integrated hybrid dielectric-plasmonic circuits. It is crucial though, to control the distance of the wire to a supporting substrate, to another metal layer or to active materials with sub-nanometer precision. A dielectric coating can be utilized for distance control, but it must not degrade the plasmonic properties. In this paper, we introduce a controlled synthesis and coating approach for silver nanowires to fulfill these demands. We synthesize and characterize silver nanowires of around 70 nm in diameter. These nanowires are coated with nm-sized silica shells using a modified Stober method to achieve a homogeneous and smooth surface quality. We use transmission electron microscopy, dark-field microscopy and electron-energy loss spectroscopy to study morphology and plasmonic resonances of individual nanowires and quantify the influence of the silica coating. Thorough numerical simulations support the experimental findings showing that the coating does not deteriorate the plasmonic properties and thus introduce silver nanowires as usable building blocks for integrated hybrid plasmonic systems. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-40380-5 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Zivanovic, Vesna A1 - Kochovski, Zdravko A1 - Arenz, Christoph A1 - Lu, Yan A1 - Kneipp, Janina T1 - SERS and Cryo-EM Directly Reveal Different Liposome Structures during Interaction with Gold Nanoparticles JF - The journal of physical chemistry letters N2 - The combination of gold nanoparticles with liposomes is important for nano- and biotechnology. Here, we present direct, label-free characterization of liposome structure and composition at the site of its interaction with citrate-stabilized gold nanoparticles by surface-enhanced Raman scattering (SERS) and cryogenic electron microscopy (cryo-EM). Evidenced by the vibrational spectra and cryo-EM, the gold nanoparticles destroy the bilayer structure of interacting liposomes in the presence of a high amount of citrate, while at lower citrate concentration the nanoparticles interact with the surface of the intact liposomes. The spectra of phosphatidylcholine and phosphatidylcholine/sphingomyelin liposomes show that at the site of interaction the lipid chains are in the gel phase. The SERS spectra indicate that cholesterol has strong effects on the contacts of the vesicles with the nanoparticles. By combining cryo-EM and SERS, the structure and properties of lipid nanoparticle composites could be tailored for the development of drug delivery systems. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpclett.8b03191 SN - 1948-7185 VL - 9 IS - 23 SP - 6767 EP - 6772 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Rothe, Martin A1 - Zhao, Yuhang A1 - Müller, Johannes A1 - Kewes, Günter A1 - Koch, Christoph T. A1 - Lu, Yan A1 - Benson, Oliver T1 - Self-assembly of plasmonic nanoantenna-waveguide structures for subdiffractional chiral sensing JF - ACS nano N2 - Spin-momentum locking is a peculiar effect in the near-field of guided optical or plasmonic modes. It can be utilized to map the spinning or handedness of electromagnetic fields onto the propagation direction. This motivates a method to probe the circular dichroism of an illuminated chiral object. In this work, we demonstrate local, subdiffraction limited chiral coupling of light and propagating surface plasmon polaritons in a self-assembled system of a gold nanoantenna and a silver nanowire. A thin silica shell around the nanowire provides precise distance control and also serves as a host for fluorescent molecules, which indicate the direction of plasmon propagation. We characterize our nanoantenna-nanowire systems comprehensively through correlated electron microscopy, energy-dispersive X-ray spectroscopy, dark-field, and fluorescence imaging. Three-dimensional numerical simulations support the experimental findings. Besides our measurement of far-field polarization, we estimate sensing capabilities and derive not only a sensitivity of 1 mdeg for the ellipticity of the light field, but also find 10(3) deg cm(2)/dmol for the circular dichroism of an analyte locally introduced in the hot spot of the antenna-wire system. Thorough modeling of a prototypical design predicts on-chip sensing of chiral analytes. This introduces our system as an ultracompact sensor for chiral response far below the diffraction limit. KW - plasmonics KW - nanoparticle assemblies KW - core-shell KW - spin-orbit coupling KW - chirality KW - circular dichroism KW - nano-optics Y1 - 2021 U6 - https://doi.org/10.1021/acsnano.0c05240 SN - 1936-0851 SN - 1936-086X VL - 15 IS - 1 SP - 351 EP - 361 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Qi, Wenjing A1 - Zhang, Yufei A1 - Kochovski, Zdravko A1 - Wang, Jue A1 - Lu, Yan A1 - Chen, Guosong A1 - Jiang, Ming T1 - Self-assembly of Human Galectin-1 via dual supramolecular interactions and its inhibition of T-cell agglutination and apoptosis JF - Nano Research N2 - Recently, we proposed a new strategy to construct artificial plant protein assemblies, which were induced by adding a small molecule, based on dual supramolecular interactions. In this paper, we further explored this method by employing Human Galectin-1 (Gal-1) as a building block to form self-assembled microribbons. Two non-covalent interactions, including lactose-lectin binding and dimerization of Rhodamine B (RhB), induced by the small molecule ligand addition, were involved in the crosslinking of the animal protein, resulting in the formation of assemblies. By using transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and three-dimensional (3D) tomographic analysis, we arrived at a possible mechanistic model for the microribbon formation. Furthermore, the morphology of protein assemblies could be fine-timed by varying the incubation time, the protein/ligand ratio, and the chemical structures of ligands. Interestingly, the formation of protein microribbons successfully inhibited Gal-1 induced T-cell agglutination and apoptosis. This is because the multivalent and dynamic interactions in protein assemblies compete with the binding between Gal-1 and the glycans on cell surfaces, which suppresses the function of Gal-1 in promotion of tumor progression and metastasis. KW - protein self-assembly KW - supramolecular interactions KW - galectin KW - cell agglutination Y1 - 2018 U6 - https://doi.org/10.1007/s12274-018-2169-7 SN - 1998-0124 SN - 1998-0000 VL - 11 IS - 10 SP - 5566 EP - 5572 PB - Tsinghua Univ Press CY - Beijing ER - TY - JOUR A1 - Yu, Hongtao A1 - Quan, Ting A1 - Mei, Shilin A1 - Kochovski, Zdravko A1 - Huang, Wei A1 - Meng, Hong A1 - Lu, Yan T1 - Prompt Electrodeposition of Ni Nanodots on Ni Foam to Construct a High-Performance Water-Splitting Electrode BT - Efficient, Scalable, and Recyclable JF - Nano-Micro Letters N2 - HighlightsFacile electrodeposition for fabricating active Ni nanodots (NiNDs) on Ni foam (NF) is shown.Binder- and heteroatom-free recyclable NiO/NiNDs@NF electrodes are efficiently made.NiO/NiNDs@NF bifunctional catalytic electrodes are used for water splitting. AbstractIn past decades, Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts for water splitting. With increasing demands for Ni worldwide, simplifying the fabrication process, increasing Ni recycling, and reducing waste are tangible sustainability goals. Here, binder-free, heteroatom-free, and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method. Typically, active Ni nanodot (NiND) clusters are electrodeposited on Ni foam (NF) in Ni(NO3)(2) acetonitrile solution. After drying in air, NiO/NiND composites are obtained, leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode. The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials ((10)(HER)=119mV and (50)(OER)=360mV) and can promote water catalysis at 1.70V@10mAcm(-2). More importantly, the recovery of raw materials (NF and Ni(NO3)(2)) is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes. Additionally, a large-sized (S similar to 70cm(2)) NiO/NiNDs@NF catalytic electrode with high durability has also been constructed. This method provides a simple and fast technology to construct high-performance, low-cost, and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting. KW - Electrodeposition KW - Ni nanodots KW - Bifunctional catalysts KW - Water splitting KW - Large-size Y1 - 2019 U6 - https://doi.org/10.1007/s40820-019-0269-x SN - 2311-6706 SN - 2150-5551 VL - 11 IS - 41 PB - Shanghai JIAO TONG univ press CY - Shanghai ER - TY - JOUR A1 - Mei, Shilin A1 - Jafta, Charl J. A1 - Lauermann, Iver A1 - Ran, Qidi A1 - Kaergell, Martin A1 - Ballauff, Matthias A1 - Lu, Yan T1 - Porous Ti4O7 Particles with Interconnected-Pore Structure as a High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries JF - Advanced functional materials N2 - Multifunctional Ti4O7 particles with interconnected-pore structure are designed and synthesized using porous poly(styrene-b-2-vinylpyridine) particles as a template. The particles can work efficiently as a sulfur-host material for lithium-sulfur batteries. Specifically, the well-defined porous Ti4O7 particles exhibit interconnected pores in the interior and have a high-surface area of 592 m(2) g(-1); this shows the advantage of mesopores for encapsulating of sulfur and provides a polar surface for chemical binding with polysulfides to suppress their dissolution. Moreover, in order to improve the conductivity of the electrode, a thin layer of carbon is coated on the Ti4O7 surface without destroying its porous structure. The porous Ti4O7 and carbon-coated Ti4O7 particles show significantly improved electrochemical performances as cathode materials for Li-S batteries as compared with those of TiO2 particles. KW - lithium-sulfur batteries KW - porous particles KW - poly(styrene-b-2-vinylpyridine) (PS-P2VP) KW - Ti4O7 Y1 - 2017 U6 - https://doi.org/10.1002/adfm.201701176 SN - 1616-301X SN - 1616-3028 VL - 27 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mei, Shilin A1 - Xu, Xiaohui A1 - Priestley, Rodney D. A1 - Lu, Yan T1 - Polydopamine-based nanoreactors: synthesis and applications in bioscience and energy materials JF - Chemical science N2 - Polydopamine (PDA)-based nanoreactors have shown exceptional promise as multifunctional materials due to their nanoscale dimensions and sub-microliter volumes for reactions of different systems. Biocompatibility, abundance of active sites, and excellent photothermal conversion have facilitated their extensive use in bioscience and energy storage/conversion. This minireview summarizes recent advances in PDA-based nanoreactors, as applied to the abovementioned fields. We first highlight the design and synthesis of functional PDA-based nanoreactors with structural and compositional diversity. Special emphasis in bioscience has been given to drug/protein delivery, photothermal therapy, and antibacterial properties, while for energy-related applications, the focus is on electrochemical energy storage, catalysis, and solar energy harvesting. In addition, perspectives on pressing challenges and future research opportunities regarding PDA-based nanoreactors are discussed. Y1 - 2020 U6 - https://doi.org/10.1039/d0sc04486e SN - 2041-6520 SN - 2041-6539 VL - 11 IS - 45 SP - 12269 EP - 12281 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Xie, Dongjiu A1 - Xu, Yaolin A1 - Wang, Yonglei A1 - Pan, Xuefeng A1 - Härk, Eneli A1 - Kochovski, Zdravko A1 - Eljarrat, Alberto A1 - Müller, Johannes A1 - Koch, Christoph T. A1 - Yuan, Jiayin A1 - Lu, Yan T1 - Poly(ionic liquid) nanovesicle-templated carbon nanocapsules functionalized with uniform iron nitride nanoparticles as catalytic sulfur host for Li-S batteries JF - ACS nano N2 - Poly(ionic liquid)s (PIL) are common precursors for heteroatom-doped carbon materials. Despite a relatively higher carbonization yield, the PIL-to-carbon conversion process faces challenges in preserving morphological and structural motifs on the nanoscale. Assisted by a thin polydopamine coating route and ion exchange, imidazoliumbased PIL nanovesicles were successfully applied in morphology-maintaining carbonization to prepare carbon composite nanocapsules. Extending this strategy further to their composites, we demonstrate the synthesis of carbon composite nanocapsules functionalized with iron nitride nanoparticles of an ultrafine, uniform size of 3-5 nm (termed "FexN@C "). Due to its unique nanostructure, the sulfur-loaded FexN@C electrode was tested to efficiently mitigate the notorious shuttle effect of lithium polysulfides (LiPSs) in Li-S batteries. The cavity of the carbon nanocapsules was spotted to better the loading content of sulfur. The well-dispersed iron nitride nanoparticles effectively catalyze the conversion of LiPSs to Li2S, owing to their high electronic conductivity and strong binding power to LiPSs. Benefiting from this well-crafted composite nanostructure, the constructed FexN@C/S cathode demonstrated a fairly high discharge capacity of 1085 mAh g(-1) at 0.5 C initially, and a remaining value of 930 mAh g(-1 )after 200 cycles. In addition, it exhibits an excellent rate capability with a high initial discharge capacity of 889.8 mAh g(-1) at 2 C. This facile PIL-to-nanocarbon synthetic approach is applicable for the exquisite design of complex hybrid carbon nanostructures with potential use in electrochemical energy storage and conversion. KW - poly(ionic liquid)s KW - nanovesicles KW - sulfur host KW - iron nitride KW - Li-S KW - batteries Y1 - 2022 U6 - https://doi.org/10.1021/acsnano.2c01992 SN - 1936-0851 SN - 1936-086X VL - 16 IS - 7 SP - 10554 EP - 10565 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Al Nakeeb, Noah A1 - Kochovski, Zdravko A1 - Li, Tingting A1 - Zhang, Youjia A1 - Lu, Yan A1 - Schmidt, Bernhard V. K. J. T1 - Poly(ethylene glycol) brush-b-poly(N-vinylpyrrolidone)-based double hydrophilic block copolymer particles crosslinked via crystalline alpha-cyclodextrin domains JF - RSC Advances N2 - Self-assembly of block copolymers is a significant area of polymer science. The self-assembly of completely water-soluble block copolymers is of particular interest, albeit a challenging task. In the present work the self-assembly of a linear-brush architecture block copolymer, namely poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) (PVP-b-POEGMA), in water is studied. Moreover, the assembled structures are crosslinked via alpha-CD host/guest complexation in a supramolecular way. The crosslinking shifts the equilibrium toward aggregate formation without switching off the dynamic equilibrium of double hydrophilic block copolymer (DHBC). As a consequence, the self-assembly efficiency is improved without extinguishing the unique DHBC self-assembly behavior. In addition, decrosslinking could be induced without a change in concentration by adding a competing complexation agent for alpha-CD. The self-assembly behavior was followed by DLS measurement, while the presence of the particles could be observed via cryo-TEM before and after crosslinking. Y1 - 2019 U6 - https://doi.org/10.1039/c8ra10672j SN - 2046-2069 VL - 9 IS - 9 SP - 4993 EP - 5001 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Gu, Sasa A1 - Risse, Sebastian A1 - Lu, Yan A1 - Ballauff, Matthias T1 - Mechanism of the oxidation of 3,3′,5,5′-tetramethylbenzidine catalyzed by peroxidase-like Pt nanoparticles immobilized in spherical polyelectrolyte brushes BT - a kinetic study JF - ChemPhysChem N2 - Experimental and kinetic modelling studies are presented to investigate the mechanism of 3,3 ',5,5 '-tetramethylbenzidine (TMB) oxidation by hydrogen peroxide (H2O2) catalyzed by peroxidase-like Pt nanoparticles immobilized in spherical polyelectrolyte brushes (SPB-Pt). Due to the high stability of SPB-Pt colloidal, this reaction can be monitored precisely in situ by UV/VIS spectroscopy. The time-dependent concentration of the blue-colored oxidation product of TMB expressed by different kinetic models was used to simulate the experimental data by a genetic fitting algorithm. After falsifying the models with abundant experimental data, it is found that both H2O2 and TMB adsorb on the surface of Pt nanoparticles to react, indicating that the reaction follows the Langmuir-Hinshelwood mechanism. A true rate constant k, characterizing the rate-determining step of the reaction and which is independent on the amount of catalysts used, is obtained for the first time. Furthermore, it is found that the product adsorbes strongly on the surface of nanoparticles, thus inhibiting the reaction. The entire analysis provides a new perspective to study the catalytic mechanism and evaluate the catalytic activity of the peroxidase-like nanoparticles. KW - kinetics KW - nanoparticles KW - reaction mechanisms KW - spherical polyelectrolyte KW - brushes KW - UV KW - vis spectroscopy Y1 - 2019 U6 - https://doi.org/10.1002/cphc.201901087 SN - 1439-4235 SN - 1439-7641 VL - 21 IS - 5 SP - 450 EP - 458 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mei, Shilin A1 - Siebert, Andreas A1 - Xu, Yaolin A1 - Quan, Ting A1 - Garcia-Diez, Raul A1 - Bär, Marcus A1 - Härtel, Paul A1 - Abendroth, Thomas A1 - Dörfler, Susanne A1 - Kaskel, Stefan A1 - Lu, Yan T1 - Large-Scale Synthesis of Nanostructured Carbon-Ti4O7 Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithium-Sulfur Pouch Cells JF - Batteries & supercaps N2 - Applications of advanced cathode materials with well-designed chemical components and/or optimized nanostructures promoting the sulfur redox kinetics and suppressing the shuttle effect of polysulfides are highly valued. However, in the case of actual lithium-sulfur (Li-S) batteries under practical working conditions, one long-term obstacle still exists, which is mainly due to the difficulties in massive synthesis of such nanomaterials with low cost and ease of control on the nanostructure. Herein, we develop a facile synthesis of carbon coated Ti4O7 hollow nanoparticles (Ti4O7) using spherical polymer electrolyte brush as soft template, which is scalable via utilizing a minipilot reactor. The C Ti4O7 hollow nanoparticles provide strong chemical adsorption to polysulfides through the large polar surface and additional physical confinement by rich micro- & mesopores and have successfully been employed as an efficient sulfur host for multilayer pouch cells. Besides, the sluggish kinetics of the sulfur and lithium sulfide redox mechanism can be improved by the highly conductive Ti4O7 via catalyzation of the conversion of polysulfides. Consequently, the C-Ti4O7 based pouch cell endows a high discharge capacity of 1003 mAhg(-1) at 0.05 C, a high-capacity retention of 83.7% after 100 cycles at 0.1 C, and a high Coulombic efficiency of 97.5% at the 100th cycle. This work proposes an effective approach to transfer the synthesis of hollow Ti4O7 nanoparticles from lab- to large-scale production, paving the way to explore a wide range of advanced nanomaterials for multilayer Li-S pouch cells. KW - lithium-sulfur batteries KW - pouch cell KW - spherical polyelectrolyte brushes (SPB) KW - Ti4O7 Y1 - 2022 U6 - https://doi.org/10.1002/batt.202100398 SN - 2566-6223 VL - 5 IS - 6 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Zhao, Yuhang A1 - Opitz, Andreas A1 - Eljarrat, Alberto A1 - Kochovski, Zdravko A1 - Koch, Christoph A1 - Koch, Norbert A1 - Lu, Yan T1 - Kinetic study on the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane on Ag nanoparticles in chloroform BT - implications for the charge transfer complex of Ag-F(4)TCNQ JF - ACS applied nano materials N2 - In this study, the kinetics of the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) on the surface of Ag nanoparticles (Ag NPs) in chloroform has been intensively investigated, as molecular doping is known to play a crucial role in organic electronic devices. Based on the results obtained from UV-visible (vis)-near-infrared (NIR) absorption spectroscopy, cryogenic transmission electron microscopy, scanning nanobeam electron diffraction, and electron energy loss spectroscopy, a two-step interaction kinetics has been proposed for the Ag NPs and F(4)TCNQ molecules, which includes the first step of electron transfer from Ag NPs to F(4)TCNQ indicated by the ionization of F(4)TCNQ and the second step of the formation of a Ag-F(4)TCNQ complex. The whole process has been followed via UV-vis-NIR absorption spectroscopy, which reveals distinct kinetics at two stages: the instantaneous ionization and the long-term complex formation. The kinetics and the influence of the molar ratio of Ag NPs/F(4)TCNQ molecules on the interaction between Ag NPs and F(4)TCNQ molecules in an organic solution are reported herein for the first time. Furthermore, the control experiment with silica-coated Ag NPs manifests that the charge transfer at the surface between Ag NPs and F(4)TCNQ molecules is prohibited by a silica layer of 18 nm. KW - Ag nanoparticles KW - F(4)TCNQ KW - phase transfer KW - kinetics KW - electron transfer KW - surface interaction Y1 - 2021 U6 - https://doi.org/10.1021/acsanm.1c02153 SN - 2574-0970 VL - 4 IS - 11 SP - 11625 EP - 11635 PB - American Chemical Society CY - Washington ER -