TY - JOUR A1 - Leuschner, Christoph A1 - Wulf, Monika A1 - Bäuchler, Patricia A1 - Hertel, Dietrich T1 - Soil C and nutrient stores under Scots pine afforestations compared to ancient beech forests in the German Pleistocene - the role of tree species and forest history JF - Forest ecology and management N2 - In the diluvial lowlands of northern Germany, the Netherlands and northern Poland, an estimated similar to 5 Mio ha of Scots pine plantations (Pinus sylvestris) has been established on sandy soil in the last 250 years replacing the former temperate broad-leaved forests after extended periods of cultivation in the Middle Ages. We examined the effect of variable stand continuity of pine plantations (recent vs. ancient: 51-128 vs. >230 years) on the soil organic carbon (SOC) store and soil nutrient capital in comparison to ancient beech forests (>230 years of continuity) which represent the potential natural forest vegetation. Recent and ancient pine stands had c. 75% larger organic layer C stores than ancient beech forests, while the total C stock in the soil (organic layer and mineral soil to 100 cm) was similar to 25% larger in the beech forests due to higher C concentrations in 0-50 cm depth of the mineral soil. The soil stores of N-tot were similar to 50% and the exchangeable Ca, K and Mg pools about three times larger under beech than under the pine stands. Resin-exchangeable P was enriched in the soils under ancient pine stands probably due to manuring in the past. After clear-cut and long cultivation, it may take >230 years of forest presence to restore the greatly reduced mineral soil C and N pools. The C and N sequestration potential of the soils appeared to be particularly small under pine indicating a pronounced tree species (pine vs. beech) effect on soil C and N dynamics. We conclude that, in the face of rising greenhouse gas emissions, the limited soil C and nutrient storage potential of Scots pine plantations on sandy soils needs consideration when selecting suitable tree species for future forestry. (C) 2013 Elsevier B.V. All rights reserved. KW - Sandy soil KW - Pinus sylvestris KW - Fagus sylvatica KW - Forest continuity KW - Historic land use KW - Nitrogen Y1 - 2013 U6 - https://doi.org/10.1016/j.foreco.2013.08.043 SN - 0378-1127 SN - 1872-7042 VL - 310 IS - 6 SP - 405 EP - 415 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Diekmann, Martin A1 - Andres, Christian A1 - Becker, Thomas A1 - Bennie, Jonathan A1 - Blueml, Volker A1 - Bullock, James M. A1 - Culmsee, Heike A1 - Fanigliulo, Miriam A1 - Hahn, Annett A1 - Heinken, Thilo A1 - Leuschner, Christoph A1 - Luka, Stefanie A1 - Meissner, Justus A1 - Müller, Josef A1 - Newton, Adrian A1 - Peppler-Lisbach, Cord A1 - Rosenthal, Gert A1 - van den Berg, Leon J. L. A1 - Vergeer, Philippine A1 - Wesche, Karsten T1 - Patterns of long-term vegetation change vary between different types of semi-natural grasslands in Western and Central Europe JF - Journal of vegetation science N2 - Questions Has plant species richness in semi-natural grasslands changed over recent decades? Do the temporal trends of habitat specialists differ from those of habitat generalists? Has there been a homogenization of the grassland vegetation? Location Different regions in Germany and the UK. Methods We conducted a formal meta-analysis of re-survey vegetation studies of semi-natural grasslands. In total, 23 data sets were compiled, spanning up to 75 years between the surveys, including 13 data sets from wet grasslands, six from dry grasslands and four from other grassland types. Edaphic conditions were assessed using mean Ellenberg indicator values for soil moisture, nitrogen and pH. Changes in species richness and environmental variables were evaluated using response ratios. Results In most wet grasslands, total species richness declined over time, while habitat specialists almost completely vanished. The number of species losses increased with increasing time between the surveys and were associated with a strong decrease in soil moisture and higher soil nutrient contents. Wet grasslands in nature reserves showed no such changes or even opposite trends. In dry grasslands and other grassland types, total species richness did not consistently change, but the number or proportions of habitat specialists declined. There were also considerable changes in species composition, especially in wet grasslands that often have been converted into intensively managed, highly productive meadows or pastures. We did not find a general homogenization of the vegetation in any of the grassland types. Conclusions The results document the widespread deterioration of semi-natural grasslands, especially of those types that can easily be transformed to high production grasslands. The main causes for the loss of grassland specialists are changed management in combination with increased fertilization and nitrogen deposition. Dry grasslands are most resistant to change, but also show a long-term trend towards an increase in more mesotrophic species. KW - dry grasslands KW - fragmentation KW - homogenization KW - management KW - meta-analysis KW - nitrogen deposition KW - quasi-permanent plot KW - re-survey KW - species richness KW - wet grasslands Y1 - 2019 U6 - https://doi.org/10.1111/jvs.12727 SN - 1100-9233 SN - 1654-1103 VL - 30 IS - 2 SP - 187 EP - 202 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Leuschner, Christoph A1 - Wulf, Monika A1 - Baeuchler, Patricia A1 - Hertel, Dietrich T1 - Forest continuity as a key determinant of soil carbon and nutrient storage in beech forests on sandy soils in Northern Germany JF - Ecosystems N2 - Forest (or tree) age has been identified as an important determinant of the carbon (C) storage potential of forest soils. A large part of Central Europe's current forested area was affected by land use change with long periods of cultivation in past centuries suggesting that the organic C stocks in the soil (SOC) under recent forest may partly be legacies of the past and that stand age effects have to be distinguished from forest continuity effects (that is, the time since re-afforestation). We examined the influence of mean tree age and forest continuity on the SOC pool and the stores of total N and available P, Ca, Mg, and K in the soil (mineral soil and organic layer) across a sample of 14 beech (Fagus sylvatica) forests on sandy soil with variable tree age (23-189 years) and forest continuity (50-year-old afforestation to ancient ('permanent') forest, that is, > 230 years of proven continuity). Ancient beech forests (> 230 years of continuity) stored on average 47 and 44% more organic C and total N in the soil than recent beech afforestation (50-128 years of continuity). Contrary to expectation, we found large and significant C and N pool differences between the forest categories in the mineral soil but not in the organic layer indicating that decade- or century-long cultivation has reduced the subsoil C and nutrient stores while the organic layer element pools have approached a new equilibrium after only 50-128 years. PCA and correlation analyses suggest that forest continuity cannot be ignored when trying to understand the variation in soil C stocks between different stands. Forest clearing, subsequent cultivation, and eventual re-afforestation with beech resulted in similar relative stock reductions of C and N and, thus, no change in soil C/N ratio. We conclude that the continuity of forest cover, which may or may not be related to tree age, is a key determinant of the soil C and nutrient stores of beech forests in the old cultural landscape of Central Europe. KW - afforestation KW - ancient forests KW - available phosphorus KW - calcium KW - Fagus sylvatica KW - forest clear-cut KW - magnesium KW - nitrogen KW - potassium KW - sandy soil Y1 - 2014 U6 - https://doi.org/10.1007/s10021-013-9738-0 SN - 1432-9840 SN - 1435-0629 VL - 17 IS - 3 SP - 497 EP - 511 PB - Springer CY - New York ER -