TY - JOUR A1 - Schaffenroth, Veronika A1 - Barlow, Brad N. A1 - Geier, Stephan A1 - Vuckovic, Maja A1 - Kilkenny, D. A1 - Wolz, M. A1 - Kupfer, Thomas A1 - Heber, Ulrich A1 - Drechsel, H. A1 - Kimeswenger, S. A1 - Marsh, T. A1 - Wolf, M. A1 - Pelisoli, Ingrid Domingos A1 - Freudenthal, Joseph A1 - Dreizler, S. A1 - Kreuzer, S. A1 - Ziegerer, E. T1 - The EREBOS project: Investigating the effect of substellar and low-mass stellar companions on late stellar evolution Survey, target selection, and atmospheric parameters JF - Astronomy and astrophysics : an international weekly journal N2 - Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations - reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution. KW - binaries: eclipsing KW - brown dwarfs KW - binaries: spectroscopic KW - binaries: close KW - subdwarfs KW - surveys Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201936019 SN - 1432-0746 VL - 630 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Irrgang, Andreas A1 - Geier, Stephan A1 - Heber, Ulrich A1 - Kupfer, Thomas A1 - Fürst, F. T1 - PG 1610+062: a runaway B star challenging classical ejection mechanisms JF - Astronomy and astrophysics : an international weekly journal N2 - Hypervelocity stars are rare objects, mostly main-sequence (MS) B stars, traveling so fast that they will eventually escape from the Milky Way. Recently, it has been shown that the popular Hills mechanism, in which a binary system is disrupted via a close encounter with the supermassive black hole at the Galactic center, may not be their only ejection mechanism. The analyses of Gaia data ruled out a Galactic center origin for some of them, and instead indicated that they are extreme disk runaway stars ejected at velocities exceeding the predicted limits of classical scenarios (dynamical ejection from star clusters or binary supernova ejection). We present the discovery of a new extreme disk runaway star, PG 1610+062, which is a slowly pulsating B star bright enough to be studied in detail. A quantitative analysis of spectra taken with ESI at the Keck Observatory revealed that PG 1610+062 is a late B-type MS star of 4–5 M⊙ with low projected rotational velocity. Abundances (C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe) were derived differentially with respect to the normal B star HD 137366 and indicate that PG 1610+062 is somewhat metal rich. A kinematic analysis, based on our spectrophotometric distance (17.3 kpc) and on proper motions from Gaia’s second data release, shows that PG 1610+062 was probably ejected from the Carina-Sagittarius spiral arm at a velocity of 550 ± 40 km s−1, which is beyond the classical limits. Accordingly, the star is in the top five of the most extreme MS disk runaway stars and is only the second among the five for which the chemical composition is known. KW - stars: abundances KW - stars: individual: HD 137366 KW - stars: kinematics and dynamics KW - stars: individual: PG 1610+062 KW - stars: early-type Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935429 SN - 1432-0746 VL - 628 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Schaffenroth, Veronika A1 - Pelisoli, Ingrid A1 - Barlow, Brad N. A1 - Geier, Stephan A1 - Kupfer, Thomas T1 - Hot subdwarfs in close binaries observed from space I. BT - orbital, atmospheric, and absolute parameters and the nature of their companions JF - Astronomy and astrophysics : an international weekly journal N2 - Context: About a third of the hot subdwarfs of spectral type B (sdBs), which are mostly core-helium-burning objects on the extreme horizontal branch, are found in close binaries with cool, low-mass stellar, substellar, or white dwarf companions. They can show light variations due to di fferent phenomena. Aims: Many hot subdwarfs now have space-based light curves with a high signal-to-noise ratio available. We used light curves from the Transiting Exoplanet Survey Satellite and the K2 space mission to look for more sdB binaries. Their light curves can be used to study the hot subdwarf primaries and their companions, and obtained orbital, atmospheric, and absolute parameters for those systems, when combined with other analysis methods. Methods: By classifying the light variations and combining these with the fit of the spectral energy distribution, the distance derived by the parallaxes obtained by Gaia, and the atmospheric parameters, mainly from the literature, we could derive the nature of the primaries and secondaries in 122 (75%) of the known sdB binaries and 82 newly found reflection e ffect systems. We derived absolute masses, radii, and luminosities for a total of 39 hot subdwarfs with cool, low-mass companions, as well 29 known and newly found sdBs with white dwarf companions. Results: The mass distribution of hot subdwarfs with cool, low-mass stellar and substellar companions, di ffers from those with white dwarf companions, implying they come from di fferent populations. By comparing the period and minimum companion mass distributions, we find that the reflection e ffect systems all have M dwarf or brown dwarf companions, and that there seem to be several di fferent populations of hot subdwarfs with white dwarf binaries - one with white dwarf minimum masses around 0.4 M-circle dot, one with longer periods and minimum companion masses up to 0.6 M-circle dot, and at the shortest period, another with white dwarf minimum masses around 0.8 M-circle dot. We also derive the first orbital period distribution for hot subdwarfs with cool, low-mass stellar or substellar systems selected from light variations instead of radial velocity variations. It shows a narrower period distribution, from 1.5 h to 35 h, compared to the distribution of hot subdwarfs with white dwarfs, which ranges from 1 h to 30 days. These period distributions can be used to constrain the previous common-envelope phase. KW - binaries: close KW - subdwarfs KW - white dwarfs KW - stars: late-type KW - stars: KW - horizontal-branch KW - stars: fundamental parameters Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202244214 SN - 0004-6361 SN - 1432-0746 VL - 666 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Ratzloff, Jeffrey K. A1 - Barlow, Brad N. A1 - Kupfer, Thomas A1 - Corcoran, Kyle A. A1 - Geier, Stephan A1 - Bauer, Evan A1 - Corbett, Henry T. A1 - Howard, Ward S. A1 - Glazier, Amy A1 - Law, Nicholas M. T1 - EVR-CB-001: An Evolving, Progenitor, White Dwarf Compact Binary Discovered with the Evryscope JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present EVR-CB-001, the discovery of a compact binary with an extremely low-mass (0.21 +/- 0.05M(circle dot)) helium core white dwarf progenitor (pre-He WD) and an unseen low-mass (0.32 +/- 0.06M(circle dot)) helium white dwarf (He WD) companion. He WDs are thought to evolve from the remnant helium-rich core of a main-sequence star stripped during the giant phase by a close companion. Low-mass He WDs are exotic objects (only about 0.2% of WDs are thought to be less than 0.3 M-circle dot), and are expected to be found in compact binaries. Pre-He WDs are even rarer, and occupy the intermediate phase after the core is stripped, but before the star becomes a fully degenerate WD and with a larger radius (approximate to 0.2R(circle dot)) than a typical WD. The primary component of EVR-CB-001 (the pre-He WD) was originally thought to be a hot subdwarf (sdB) star from its blue color and under-luminous magnitude, characteristic of sdBs. The mass, temperature (T-eff = 18,500 +/- 500 K), and surface gravity (log(g) = 4.96 +/- 0.04) solutions from this work are lower than values for typical hot subdwarfs. The primary is likely to be a post-red-giant branch, pre-He WD contracting into a He WD, and at a stage that places it nearest to sdBs on color-magnitude and T-eff-log(g) diagrams. EVR-CB-001 is expected to evolve into a fully double degenerate, compact system that should spin down and potentially evolve into a single hot subdwarf star. Single hot subdwarfs are observed, but progenitor systems have been elusive. Y1 - 2019 U6 - https://doi.org/10.3847/1538-4357/ab3727 SN - 0004-637X SN - 1538-4357 VL - 883 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Pelisoli, Ingrid A1 - Dorsch, Matti A1 - Heber, Ulrich A1 - Gänsicke, Boris A1 - Geier, Stephan A1 - Kupfer, Thomas A1 - Nemeth, Peter A1 - Scaringi, Simone A1 - Schaffenroth, Veronika T1 - Discovery and analysis of three magnetic hot subdwarf stars BT - evidence for merger-induced magnetic fields JF - Monthly notices of the Royal Astronomical Society N2 - Magnetic fields can play an important role in stellar evolution. Among white dwarfs, the most common stellar remnant, the fraction of magnetic systems is more than 20 per cent. The origin of magnetic fields in white dwarfs, which show strengths ranging from 40 kG to hundreds of MG, is still a topic of debate. In contrast, only one magnetic hot subdwarf star has been identified out of thousands of known systems. Hot subdwarfs are formed from binary interaction, a process often associated with the generation of magnetic fields, and will evolve to become white dwarfs, which makes the lack of detected magnetic hot subdwarfs a puzzling phenomenon. Here we report the discovery of three new magnetic hot subdwarfs with field strengths in the range 300-500 kG. Like the only previously known system, they are all helium-rich O-type stars (He-sdOs). We analysed multiple archival spectra of the three systems and derived their stellar properties. We find that they all lack radial velocity variability, suggesting formation via a merger channel. However, we derive higher than typical hydrogen abundances for their spectral type, which are in disagreement with current model predictions. Our findings suggest a lower limit to the magnetic fraction of hot subdwarfs of 0.147(+0.143)(-0.047) per cent, and provide evidence for merger-induced magnetic fields which could explain white dwarfs with field strengths of 50-150 MG, assuming magnetic flux conservation. KW - stars: magnetic field KW - subdwarfs Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac1069 SN - 0035-8711 SN - 1365-2966 VL - 515 IS - 2 SP - 2496 EP - 2510 PB - Oxford University Press CY - Oxford ER -