TY - JOUR A1 - Koebsch, Franziska A1 - Winkel, Matthias A1 - Liebner, Susanne A1 - Liu, Bo A1 - Westphal, Julia A1 - Schmiedinger, Iris A1 - Spitzy, Alejandro A1 - Gehre, Matthias A1 - Jurasinski, Gerald A1 - Köhler, Stefan A1 - Unger, Viktoria A1 - Koch, Marian A1 - Sachs, Torsten A1 - Böttcher, Michael E. T1 - Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland JF - Biogeosciences N2 - In natural coastal wetlands, high supplies of marine sulfate suppress methanogenesis. Coastal wetlands are, however, often subject to disturbance by diking and drainage for agricultural use and can turn to potent methane sources when rewetted for remediation. This suggests that preceding land use measures can suspend the sulfate-related methane suppressing mechanisms. Here, we unravel the hydrological relocation and biogeochemical S and C transformation processes that induced high methane emissions in a disturbed and rewetted peatland despite former brackish impact. The underlying processes were investigated along a transect of increasing distance to the coastline using a combination of concentration patterns, stable isotope partitioning, and analysis of the microbial community structure. We found that diking and freshwater rewetting caused a distinct freshening and an efficient depletion of the brackish sulfate reservoir by dissimilatory sulfate reduction (DSR). Despite some legacy effects of brackish impact expressed as high amounts of sedimentary S and elevated electrical conductivities, contemporary metabolic processes operated mainly under sulfate-limited conditions. This opened up favorable conditions for the establishment of a prospering methanogenic community in the top 30-40 cm of peat, the structure and physiology of which resemble those of terrestrial organic-rich environments. Locally, high amounts of sulfate persisted in deeper peat layers through the inhibition of DSR, probably by competitive electron acceptors of terrestrial origin, for example Fe(III). However, as sulfate occurred only in peat layers below 30-40 cm, it did not interfere with high methane emissions on an ecosystem scale. Our results indicate that the climate effect of disturbed and remediated coastal wetlands cannot simply be derived by analogy with their natural counterparts. From a greenhouse gas perspective, the re-exposure of diked wetlands to natural coastal dynamics would literally open up the floodgates for a replenishment of the marine sulfate pool and therefore constitute an efficient measure to reduce methane emissions. Y1 - 2019 U6 - https://doi.org/10.5194/bg-16-1937-2019 SN - 1726-4170 SN - 1726-4189 VL - 16 IS - 9 SP - 1937 EP - 1953 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Wen, Xi A1 - Unger, Viktoria A1 - Jurasinski, Gerald A1 - Koebsch, Franziska A1 - Horn, Fabian A1 - Rehder, Gregor A1 - Sachs, Torsten A1 - Zak, Dominik A1 - Lischeid, Gunnar A1 - Knorr, Klaus-Holger A1 - Boettcher, Michael E. A1 - Winkel, Matthias A1 - Bodelier, Paul L. E. A1 - Liebner, Susanne T1 - Predominance of methanogens over methanotrophs in rewetted fens characterized by high methane emissions JF - Biogeosciences N2 - The rewetting of drained peatlands alters peat geochemistry and often leads to sustained elevated methane emission. Although this methane is produced entirely by microbial activity, the distribution and abundance of methane-cycling microbes in rewetted peatlands, especially in fens, is rarely described. In this study, we compare the community composition and abundance of methane-cycling microbes in relation to peat porewater geochemistry in two rewetted fens in northeastern Germany, a coastal brackish fen and a freshwater riparian fen, with known high methane fluxes. We utilized 16S rRNA high-throughput sequencing and quantitative polymerase chain reaction (qPCR) on 16S rRNA, mcrA, and pmoA genes to determine microbial community composition and the abundance of total bacteria, methanogens, and methanotrophs. Electrical conductivity (EC) was more than 3 times higher in the coastal fen than in the riparian fen, averaging 5.3 and 1.5 mS cm(-1), respectively. Porewater concentrations of terminal electron acceptors (TEAs) varied within and among the fens. This was also reflected in similarly high intra- and inter-site variations of microbial community composition. Despite these differences in environmental conditions and electron acceptor availability, we found a low abundance of methanotrophs and a high abundance of methanogens, represented in particular by Methanosaetaceae, in both fens. This suggests that rapid (re) establishment of methanogens and slow (re) establishment of methanotrophs contributes to prolonged increased methane emissions following rewetting. Y1 - 2018 U6 - https://doi.org/10.5194/bg-15-6519-2018 SN - 1726-4170 SN - 1726-4189 VL - 15 IS - 21 SP - 6519 EP - 6536 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Heinrich, Ingo A1 - Balanzategui, Daniel A1 - Bens, Oliver A1 - Blasch, Gerald A1 - Blume, Theresa A1 - Boettcher, Falk A1 - Borg, Erik A1 - Brademann, Brian A1 - Brauer, Achim A1 - Conrad, Christopher A1 - Dietze, Elisabeth A1 - Dräger, Nadine A1 - Fiener, Peter A1 - Gerke, Horst H. A1 - Güntner, Andreas A1 - Heine, Iris A1 - Helle, Gerhard A1 - Herbrich, Marcus A1 - Harfenmeister, Katharina A1 - Heussner, Karl-Uwe A1 - Hohmann, Christian A1 - Itzerott, Sibylle A1 - Jurasinski, Gerald A1 - Kaiser, Knut A1 - Kappler, Christoph A1 - Koebsch, Franziska A1 - Liebner, Susanne A1 - Lischeid, Gunnar A1 - Merz, Bruno A1 - Missling, Klaus Dieter A1 - Morgner, Markus A1 - Pinkerneil, Sylvia A1 - Plessen, Birgit A1 - Raab, Thomas A1 - Ruhtz, Thomas A1 - Sachs, Torsten A1 - Sommer, Michael A1 - Spengler, Daniel A1 - Stender, Vivien A1 - Stüve, Peter A1 - Wilken, Florian T1 - Interdisciplinary Geo-ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENO-NE) JF - Vadose zone journal N2 - The Northeast German Lowland Observatory (TERENO-NE) was established to investigate the regional impact of climate and land use change. TERENO-NE focuses on the Northeast German lowlands, for which a high vulnerability has been determined due to increasing temperatures and decreasing amounts of precipitation projected for the coming decades. To facilitate in-depth evaluations of the effects of climate and land use changes and to separate the effects of natural and anthropogenic drivers in the region, six sites were chosen for comprehensive monitoring. In addition, at selected sites, geoarchives were used to substantially extend the instrumental records back in time. It is this combination of diverse disciplines working across different time scales that makes the observatory TERENO-NE a unique observation platform. We provide information about the general characteristics of the observatory and its six monitoring sites and present examples of interdisciplinary research activities at some of these sites. We also illustrate how monitoring improves process understanding, how remote sensing techniques are fine-tuned by the most comprehensive ground-truthing site DEMMIN, how soil erosion dynamics have evolved, how greenhouse gas monitoring of rewetted peatlands can reveal unexpected mechanisms, and how proxy data provides a long-term perspective of current ongoing changes. Y1 - 2018 U6 - https://doi.org/10.2136/vzj2018.06.0116 SN - 1539-1663 VL - 17 IS - 1 PB - Soil Science Society of America CY - Madison ER -