TY - JOUR A1 - Morris, Mackenzie C. A1 - Kassam, Farzaan A1 - Bercz, Aron A1 - Beckmann, Nadine A1 - Schumacher, Fabian A1 - Gulbins, Erich A1 - Makley, Amy T. A1 - Goodman, Michael D. T1 - The Role of Chemoprophylactic Agents in Modulating Platelet Aggregability After Traumatic Brain Injury JF - Journal of surgical research N2 - Background: The pathophysiology behind the subacute but persistent hypercoagulable state after traumatic brain injury (TBI) is poorly understood but contributes to morbidity induced by venous thromboembolism. Because platelets and their microvesicles have been hypothesized to play a role in post-traumatic hypercoagulability, administration of commonly used agents may ameliorate this coagulability. We hypothesized that utilization of aspirin, ketorolac, amitriptyline, unfractionated heparin, or enoxaparin would modulate the platelet aggregation response after TBI. Methods: Concussive TBI was induced by weight drop. Mice were then randomized to receive aspirin, ketorolac, amitriptyline, heparin, enoxaparin, or saline control at 2 and 8 h after TBI. Mice were sacrificed at 6 or 24 h after injury to determine coagulability by rotational thromboelastometry (ROTEM), platelet function testing with impedance aggregometry, and microvesicle enumeration. Platelet sphingolipid metabolites were analyzed by mass spectrometry. Results: ROTEM demonstrated increased platelet contribution to maximum clot firmness at 6 h after TBI in mice that received aspirin or amitriptyline, but this did not persist at 24 h. By contrast, adenosine diphosphate- and arachidonic acid-induced platelet aggregation at 6 h was significantly lower in mice receiving ketorolac, aspirin, and amitriptyline compared with mice receiving saline at 6 h after injury and only arachidonic acid-initiated platelet aggregation was decreased by aspirin at 24 h. There were no differences in microvesicle production at either time point. Platelet sphingosine-1-phosphate levels were decreased at 6 h in the group receiving amitriptyline and increased at 24 h along with platelet ceramide levels at 24 h in the amitriptyline group. Conclusion: After TBI, amitriptyline decreased platelet aggregability and increased contribution to clot in a manner similar to aspirin. The amitriptyline effects on platelet function and sphingolipid metabolites may represent a possible role of the acid sphingomyelinase in the hypercoagulability observed after injury. In addition, inhibition of platelet reactivity may be an underappreciated benefit of low molecular weight heparins, such as enoxaparin. (C) 2019 Elsevier Inc. All rights reserved. KW - Trauma KW - Traumatic brain injury KW - Venous thromboembolism KW - Chemoprophylaxis KW - Sphingolipids Y1 - 2019 U6 - https://doi.org/10.1016/j.jss.2019.06.022 SN - 0022-4804 SN - 1095-8673 VL - 244 SP - 1 EP - 8 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Zoicas, Iulia A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Reichel, Martin A1 - Gulbins, Erich A1 - Fejtova, Anna A1 - Kornhuber, Johannes A1 - Rhein, Cosima T1 - The forebrain-specific overexpression of acid sphingomyelinase induces depressive-like symptoms in mice JF - Cells N2 - Human and murine studies identified the lysosomal enzyme acid sphingomyelinase (ASM) as a target for antidepressant therapy and revealed its role in the pathophysiology of major depression. In this study, we generated a mouse model with overexpression of Asm (Asm-tg(fb)) that is restricted to the forebrain to rule out any systemic effects of Asm overexpression on depressive-like symptoms. The increase in Asm activity was higher in male Asm-tg(fb) mice than in female Asm-tg(fb) mice due to the breeding strategy, which allows for the generation of wild-type littermates as appropriate controls. Asm overexpression in the forebrain of male mice resulted in a depressive-like phenotype, whereas in female mice, Asm overexpression resulted in a social anxiogenic-like phenotype. Ceramides in male Asm-tg(fb) mice were elevated specifically in the dorsal hippocampus. mRNA expression analyses indicated that the increase in Asm activity affected other ceramide-generating pathways, which might help to balance ceramide levels in cortical brain regions. This forebrain-specific mouse model offers a novel tool for dissecting the molecular mechanisms that play a role in the pathophysiology of major depression. KW - Smpd1 KW - acid sphingomyelinase KW - forebrain KW - depressive-like behavior KW - anxiety-like behavior KW - ceramide Y1 - 2020 VL - 9 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Seitz, Aaron P. A1 - Schumacher, Fabian A1 - Baker, Jennifer A1 - Soddemann, Matthias A1 - Wilker, Barbara A1 - Caldwell, Charles C. A1 - Gobble, Ryan M. A1 - Kamler, Markus A1 - Becker, Katrin Anne A1 - Beck, Sascha A1 - Kleuser, Burkhard A1 - Edwards, Michael J. A1 - Gulbins, Erich T1 - Sphingosine-coating of plastic surfaces prevents ventilator-associated pneumonia JF - Journal of molecular medicine N2 - Ventilator-associated pneumonia (VAP) is a major cause of morbidity and mortality in critically ill patients. Here, we employed the broad antibacterial effects of sphingosine to prevent VAP by developing a novel method of coating surfaces of endotracheal tubes with sphingosine and sphingosine analogs. Sphingosine and phytosphingosine coatings of endotracheal tubes prevent adherence and mediate killing of Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus, even in biofilms. Most importantly, sphingosine-coating of endotracheal tubes also prevented P. aeruginosa and S. aureus pneumonia in vivo. Coating of the tubes with sphingosine was stable, without obvious side effects on tracheal epithelial cells and did not induce inflammation. In summary, we describe a novel method to coat plastic surfaces and provide evidence for the application of sphingosine and phytosphingosine as novel antimicrobial coatings to prevent bacterial adherence and induce killing of pathogens on the surface of endotracheal tubes with potential to prevent biofilm formation and VAP.Key messagesNovel dip-coating method to coat plastic surfaces with lipids.Sphingosine and phytosphingosine as novel antimicrobial coatings on plastic surface.Sphingosine coatings of endotracheal tubes prevent bacterial adherence and biofilms.Sphingosine coatings of endotracheal tubes induce killing of pathogens.Sphingosine coatings of endotracheal tubes ventilator-associated pneumonia. KW - Coating KW - Plastic surfaces KW - Sphingosine KW - Ventilation KW - Acinetobacter baumannii KW - Pseudomonas aeruginosa KW - Staphylococcus aureus Y1 - 2019 U6 - https://doi.org/10.1007/s00109-019-01800-1 SN - 0946-2716 SN - 1432-1440 VL - 97 IS - 8 SP - 1195 EP - 1211 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Pewzner-Jung, Yael A1 - Tabazavareh, Shaghayegh Tavakoli A1 - Grassme, Heike A1 - Becker, Katrin Anne A1 - Japtok, Lukasz A1 - Steinmann, Joerg A1 - Joseph, Tammar A1 - Lang, Stephan A1 - Tuemmler, Burkhard A1 - Schuchman, Edward H. A1 - Lentsch, Alex B. A1 - Kleuser, Burkhard A1 - Edwards, Michael J. A1 - Futerman, Anthony H. A1 - Gulbins, Erich T1 - Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa JF - EMBO molecular medicine N2 - Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P.aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P.aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection. KW - cystic fibrosis KW - long chain base KW - lung infection KW - Pseudomonas aeruginosa KW - sphingosine Y1 - 2014 U6 - https://doi.org/10.15252/emmm.201404075 SN - 1757-4676 SN - 1757-4684 VL - 6 IS - 9 SP - 1205 EP - 1214 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Carpinteiro, Alexander A1 - Becker, Katrin Anne A1 - Japtok, Lukasz A1 - Hessler, Gabriele A1 - Keitsch, Simone A1 - Pozgajova, Miroslava A1 - Schmid, Kurt W. A1 - Adams, Constantin A1 - Müller, Stefan A1 - Kleuser, Burkhard A1 - Edwards, Michael J. A1 - Grassme, Heike A1 - Helfrich, Iris A1 - Gulbins, Erich T1 - Regulation of hematogenous tumor metastasis by acid sphingomyelinase JF - EMBO molecular medicine N2 - Metastatic dissemination of cancer cells is the ultimate hallmark of malignancy and accounts for approximately 90% of human cancer deaths. We investigated the role of acid sphingomyelinase (Asm) in the hematogenous metastasis of melanoma cells. Intravenous injection of B16F10 melanoma cells into wild-type mice resulted in multiple lung metastases, while Asm-deficient mice (Smpd1(-/-) mice) were protected from pulmonary tumor spread. Transplanting wild-type platelets into Asm-deficient mice reinstated tumor metastasis. Likewise, Asm-deficient mice were protected from hematogenous MT/ret melanoma metastasis to the spleen in a mouse model of spontaneous tumor metastasis. Human and mouse melanoma cells triggered activation and release of platelet secretory Asm, in turn leading to ceramide formation, clustering, and activation of 51 integrins on melanoma cells finally leading to adhesion of the tumor cells. Clustering of integrins by applying purified Asm or C-16 ceramide to B16F10 melanoma cells before intravenous injection restored trapping of tumor cells in the lung in Asm-deficient mice. This effect was revertable by arginine-glycine-aspartic acid peptides, which are known inhibitors of integrins, and by antibodies neutralizing 1 integrins. These findings indicate that melanoma cells employ platelet-derived Asm for adhesion and metastasis. KW - acid sphingomyelinase KW - ceramide KW - integrins KW - platelets KW - tumor-metastasis Y1 - 2015 SN - 1757-4676 SN - 1757-4684 VL - 7 IS - 6 SP - 714 EP - 734 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Beckmann, Nadine A1 - Kadow, Stephanie A1 - Schumacher, Fabian A1 - Goethert, Joachim R. A1 - Kesper, Stefanie A1 - Draeger, Annette A1 - Schulz-Schaeffer, Walter J. A1 - Wang, Jiang A1 - Becker, Jan U. A1 - Kramer, Melanie A1 - Kuehn, Claudine A1 - Kleuser, Burkhard A1 - Becker, Katrin Anne A1 - Gulbins, Erich A1 - Carpinteiro, Alexander T1 - Pathological manifestations of Farber disease in a new mouse model JF - Biological chemistry N2 - Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1(tmEx1) mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies. KW - acid ceramidase KW - ceramide KW - Farber disease KW - lysosomal storage disorders Y1 - 2018 U6 - https://doi.org/10.1515/hsz-2018-0170 SN - 1431-6730 SN - 1437-4315 VL - 399 IS - 10 SP - 1183 EP - 1202 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Wigger, Dominik A1 - Gulbins, Erich A1 - Kleuser, Burkhard A1 - Schumacher, Fabian T1 - Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry JF - Frontiers in Cell and Developmental Biology N2 - Sphingolipids are a class of lipids that share a sphingoid base backbone. They exert various effects in eukaryotes, ranging from structural roles in plasma membranes to cellular signaling. De novo sphingolipid synthesis takes place in the endoplasmic reticulum (ER), where the condensation of the activated C₁₆ fatty acid palmitoyl-CoA and the amino acid L-serine is catalyzed by serine palmitoyltransferase (SPT). The product, 3-ketosphinganine, is then converted into more complex sphingolipids by additional ER-bound enzymes, resulting in the formation of ceramides. Since sphingolipid homeostasis is crucial to numerous cellular functions, improved assessment of sphingolipid metabolism will be key to better understanding several human diseases. To date, no assay exists capable of monitoring de novo synthesis sphingolipid in its entirety. Here, we have established a cell-free assay utilizing rat liver microsomes containing all the enzymes necessary for bottom-up synthesis of ceramides. Following lipid extraction, we were able to track the different intermediates of the sphingolipid metabolism pathway, namely 3-ketosphinganine, sphinganine, dihydroceramide, and ceramide. This was achieved by chromatographic separation of sphingolipid metabolites followed by detection of their accurate mass and characteristic fragmentations through high-resolution mass spectrometry and tandem-mass spectrometry. We were able to distinguish, unequivocally, between de novo synthesized sphingolipids and intrinsic species, inevitably present in the microsome preparations, through the addition of stable isotope-labeled palmitate-d₃ and L-serine-d₃. To the best of our knowledge, this is the first demonstration of a method monitoring the entirety of ER-associated sphingolipid biosynthesis. Proof-of-concept data was provided by modulating the levels of supplied cofactors (e.g., NADPH) or the addition of specific enzyme inhibitors (e.g., fumonisin B₁). The presented microsomal assay may serve as a useful tool for monitoring alterations in sphingolipid de novo synthesis in cells or tissues. Additionally, our methodology may be used for metabolism studies of atypical substrates – naturally occurring or chemically tailored – as well as novel inhibitors of enzymes involved in sphingolipid de novo synthesis. KW - sphingolipid de novo synthesis KW - serine palmitoyltransferase KW - mass spectrometry KW - stable-isotope labeling KW - ceramides Y1 - 2019 U6 - https://doi.org/10.3389/fcell.2019.00210 SN - 2296-634X VL - 7 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Neuber, Corinna A1 - Schumacher, Fabian A1 - Gulbins, Erich A1 - Kleuser, Burkhard T1 - Method to simultaneously determine the sphingosine 1-phosphate breakdown product (2E)-hexadecenal and its fatty acid derivatives using isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight mass spectrometry JF - Analytical chemistry N2 - Sphingosine 1-phosphate (S1P), a bioactive lipid involved in various physiological processes, can be irreversibly degraded by the membrane-bound S1P lyase (S1PL) yielding (2E)-hexadecenal and phosphoethanolamine. It is discussed that (2E)-hexadecenal is further oxidized to (2E)-hexadecenoic acid by the long-chain fatty aldehyde dehydrogenase ALDH3A2 (also known as FALDH) prior to activation via coupling to coenzyme A (CoA). Inhibition or defects in these enzymes, S1PL or FALDH, result in severe immunological disorders or the Sjogren-Larsson syndrome, respectively. Hence, it is of enormous importance to simultaneously determine the S1P breakdown product (2E)-hexadecenal and its fatty acid metabolites in biological samples. However, no method is available so far. Here, we present a sensitive and selective isotope-dilution high performance liquid chromatographyelectrospray ionizationquadrupole/time-of-flight mass spectrometry method for simultaneous quantification of (2E)-hexadecenal and its fatty acid metabolites following derivatization with 2-diphenylacetyl-1,3-indandione-1-hydrazone and 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. Optimized conditions for sample derivatization, chromatographic separation, and MS/MS detection are presented as well as an extensive method validation. Finally, our method was successfully applied to biological samples. We found that (2E)-hexadecenal is almost quantitatively oxidized to (2E)-hexadecenoic acid, that is further activated as verified by cotreatment of HepG2 cell lysates with (2E)-hexadecenal and the acyl-CoA synthetase inhibitor triacsin C. Moreover, incubations of cell lysates with deuterated (2E)-hexadecenal revealed that no hexadecanoic acid is formed from the aldehyde. Thus, our method provides new insights into the sphingolipid metabolism and will be useful to investigate diseases known for abnormalities in long-chain fatty acid metabolism, e.g., the Sjogren-Larsson syndrome, in more detail. Y1 - 2014 U6 - https://doi.org/10.1021/ac501677y SN - 0003-2700 SN - 1520-6882 VL - 86 IS - 18 SP - 9065 EP - 9073 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Neuber, Corinna A1 - Schumacher, Fabian A1 - Gulbins, Erich A1 - Kleuser, Burkhard T1 - Mass Spectrometric Determination of Fatty Aldehydes Exemplified by Monitoring the Oxidative Degradation of (2E)-Hexadecenal in HepG2 Cell Lysates JF - Lipidomics N2 - Within the last few decades, liquid chromatography-mass spectrometry (LC-MS) has become a preferred method for manifold issues in analytical biosciences, given its high selectivity and sensitivity. However, the analysis of fatty aldehydes, which are important components of cell metabolism, remains challenging. Usually, chemical derivatization prior to MS detection is required to enhance ionization efficiency. In this regard, the coupling of fatty aldehydes to hydrazines like 2,4-dinitrophenylhydrazine (DNPH) is a common approach. Additionally, hydrazones readily react with fatty aldehydes to form stable derivatives, which can be easily separated using high-performance liquid chromatography (HPLC) and subsequently detected by MS. Here, we exemplarily present the quantification of the long-chain fatty aldehyde (2E)-hexadecenal, a break-down product of the bioactive lipid sphingosine 1-phosphate (S1P), after derivatization with 2-diphenylacetyl-1,3-indandione-1-hydrazone (DAIH) via isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight (ESI-QTOF) MS. Moreover, we show that the addition of N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC hydrochloride) as a coupling agent allows for simultaneous determination of fatty aldehydes and fatty acids as DAIH derivatives. Taking advantage of this, we describe in detail how to monitor the degradation of (2E)-hexadecenal and the concurrent formation of its oxidation product (2E)-hexadecenoic acid in lysates of human hepatoblastoma (HepG2) cells within this chapter. KW - (2E)-hexadecenal KW - (2E)-hexadecenoic acid KW - Sphingosine 1-phosphate KW - Derivatization KW - DAIH KW - EDC KW - Isotope-dilution KW - HPLC-ESI-QTOF Y1 - 2017 SN - 978-1-4939-6946-3 SN - 978-1-4939-6944-9 U6 - https://doi.org/10.1007/978-1-4939-6946-3_10 SN - 0893-2336 SN - 1940-6045 VL - 125 SP - 147 EP - 158 PB - Humana Press CY - Totowa ER - TY - JOUR A1 - Fayyaz, Susann A1 - Japtok, Lukasz A1 - Schumacher, Fabian A1 - Wigger, Dominik A1 - Schulz, Tim Julius A1 - Haubold, Kathrin A1 - Gulbins, Erich A1 - Völler, Heinz A1 - Kleuser, Burkhard T1 - Lysophosphatidic acid inhibits insulin signaling in primary rat hepatocytes via the LPA(3) receptor subtype and is increased in obesity JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Background/Aims: Obesity is a main risk factor for the development of hepatic insulin resistance and it is accompanied by adipocyte hypertrophy and an elevated expression of different adipokines such as autotaxin (ATX). ATX converts lysophosphatidylcholine to lysophosphatidic acid (LPA) and acts as the main producer of extracellular LPA. This bioactive lipid regulates a broad range of physiological and pathological responses by activation of LPA receptors (LPA1-6). Methods: The activation of phosphatidylinositide 3-kinases (PI3K) signaling (Akt and GSK-3ß) was analyzed via western blotting in primary rat hepatocytes. Incorporation of glucose into glycogen was measured by using radio labeled glucose. Real-time PCR analysis and pharmacological modulation of LPA receptors were performed. Human plasma LPA levels of obese (BMI > 30, n = 18) and normal weight individuals (BMI 18.5-25, n = 14) were analyzed by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Results: Pretreatment of primary hepatocytes with LPA resulted in an inhibition of insulin-mediated Gck expression, PI3K activation and glycogen synthesis. Pharmacological approaches revealed that the LPA3-receptor subtype is responsible for the inhibitory effect of LPA on insulin signaling. Moreover, human plasma LPA concentrations (16: 0 LPA) of obese participants (BMI > 30) are significantly elevated in comparison to normal weight individuals (BMI 18.5-25). Conclusion: LPA is able to interrupt insulin signaling in primary rat hepatocytes via the LPA3 receptor subtype. Moreover, the bioactive lipid LPA (16: 0) is increased in obesity. KW - Lysophosphatidic acid KW - Insulin signaling KW - Adipose tissue KW - Autotaxin KW - Hepatic insulin resistance KW - LPA(3) receptor subtype Y1 - 2017 U6 - https://doi.org/10.1159/000480470 SN - 1015-8987 SN - 1421-9778 VL - 43 SP - 445 EP - 456 PB - Karger CY - Basel ER - TY - JOUR A1 - Hollmann, Claudia A1 - Werner, Sandra A1 - Avota, Elita A1 - Reuter, Dajana A1 - Japtok, Lukasz A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Becker, Katrin Anne A1 - Schneider-Schaulies, Jürgen A1 - Beyersdorf, Niklas T1 - Inhibition of Acid Sphingomyelinase Allows for Selective Targeting of CD4(+) Conventional versus Foxp3(+) Regulatory T Cells JF - The journal of immunology N2 - CD4(+) Foxp3(+) regulatory T cells (Tregs) depend on CD28 signaling for their survival and function, a receptor that has been previously shown to activate the acid sphingomyelinase (Asm)/ceramide system. In this article, we show that the basal and CD28-induced Asm activity is higher in Tregs than in conventional CD4(+) T cells (Tconvs) of wild-type (wt) mice. In Asm-deficient (Smpd1(-/-); Asm(-/-)) mice, as compared with wt mice, the frequency of Tregs among CD4(+) T cells, turnover of the effector molecule CTLA-4, and their suppressive activity in vitro were increased. The biological significance of these findings was confirmed in our Treg-sensitive mouse model of measles virus (MV) CNS infection, in which we observed more infected neurons and less MV-specific CD8(+) T cells in brains of Asm(-/-) mice compared with wt mice. In addition to genetic deficiency, treatment of wt mice with the Asm inhibitor amitriptyline recapitulated the phenotype of Asm-deficient mice because it also increased the frequency of Tregs among CD4(+) T cells. Reduced absolute cell numbers of Tconvs after inhibitor treatment in vivo and extensive in vitro experiments revealed that Tregs are more resistant toward Asm inhibitor-induced cell death than Tconvs. Mechanistically, IL-2 was capable of providing crucial survival signals to the Tregs upon inhibitor treatment in vitro, shifting the Treg/Tconv ratio to the Treg side. Thus, our data indicate that Asm-inhibiting drugs should be further evaluated for the therapy of inflammatory and autoimmune disorders. Y1 - 2016 U6 - https://doi.org/10.4049/jimmunol.1600691 SN - 0022-1767 SN - 1550-6606 VL - 197 SP - 3130 EP - 3141 PB - American Assoc. of Immunologists CY - Bethesda ER - TY - JOUR A1 - Folkesson, Maggie A1 - Vorkapic, Emina A1 - Gulbins, Erich A1 - Japtok, Lukasz A1 - Kleuser, Burkhard A1 - Welander, Martin A1 - Länne, Toste A1 - Wågsäter, Dick T1 - Inflammatory cells, ceramides, and expression of proteases in perivascular adipose tissue adjacent to human abdominal aortic aneurysms JF - Journal of vascular surgery N2 - Background: Abdominal aortic aneurysm (AAA) is a deadly irreversible weakening and distension of the abdominal aortic wall. The pathogenesis of AAA remains poorly understood. Investigation into the physical and molecular characteristics of perivascular adipose tissue (PVAT) adjacent to AAA has not been done before and is the purpose of this study. Methods and Results: Human aortae, periaortic PVAT, and fat surrounding peripheral arteries were collected from patients undergoing elective surgical repair of AAA. Control aortas were obtained from recently deceased healthy organ donors with no known arterial disease. Aorta and PVAT was found in AAA to larger extent compared with control aortas. Immunohistochemistry revealed neutrophils, macrophages, mast cells, and T-cells surrounding necrotic adipocytes. Gene expression analysis showed that neutrophils, mast cells, and T-cells were found to be increased in PVAT compared with AAA as well as cathepsin K and S. The concentration of ceramides in PVAT was determined using mass spectrometry and correlated with content of T-cells in the PVAT. Conclusions: Our results suggest a role for abnormal necrotic, inflamed, proteolytic adipose tissue to the adjacent aneurysmal aortic wall in ongoing vascular damage. Y1 - 2016 U6 - https://doi.org/10.1016/j.jvs.2015.12.056 SN - 0741-5214 VL - 65 IS - 4 SP - 1171 EP - 1179 PB - Elsevier CY - New York ER - TY - JOUR A1 - Schumacher, Fabian A1 - Chakraborty, Sudipta A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Schwerdtle, Tanja A1 - Aschner, Michael A. A1 - Bornhorst, Julia T1 - Highly sensitive isotope-dilution liquid-chromatography-electrospray ionization-tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans JF - Talanta : the international journal of pure and applied analytical chemistry N2 - Dopamine (DA) and serotonin (SRT) are monoamine neurotransmitters that play a key role in regulating the central and peripheral nervous system. Their impaired metabolism has been implicated in several neurological disorders, such as Parkinson's disease and depression. Consequently, it is imperative to monitor changes in levels of these low-abundant neurotransmitters and their role in mediating disease. For the first time, a rapid, specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of DA and SRT in the nematode Caenorhabditis elegans (C. elegans). This model organism offers a unique approach for studying the effect of various drugs and environmental conditions on neurotransmitter levels, given by the conserved DA and SRT biology, including synaptic release, trafficking and formation. We introduce a novel sample preparation protocol incorporating the usage of sodium thiosulfate in perchloric acid as extraction medium that assures high recovery of the relatively unstable neurotransmitters monitored. Moreover, the use of both deuterated internal standards and the multiple reaction monitoring (MRM) technique allows for unequivocal quantification. Thereby, to the best of our knowledge, we achieve a detection sensitivity that clearly exceeds those of published DA and SRT quantification methods in various matrices. We are the first to show that exposure of C elegans to the monoamine oxidase B (MAOB) inhibitor selegiline or the catechol-O-methyltransferase (COMT) inhibitor tolcapone, in order to block DA and SRT degradation, resulted in accumulation of the respective neurotransmitter. Assessment of a behavioral output of the dopaminergic system (basal slowing response) corroborated the analytical LC-MS/MS data. Thus, utilization of the C elegans model system in conjunction with our analytical method is well-suited to investigate drug-mediated modulation of the DA and SRT system in order to identify compounds with neuroprotective or regenerative properties. (C) 2015 Elsevier B.V. All rights reserved. KW - Caenorhabditis elegans KW - Dopamine KW - Serotonin KW - Liquid chromatography-tandem mass spectrometry KW - Isotope-dilution analysis Y1 - 2015 U6 - https://doi.org/10.1016/j.talanta.2015.05.057 SN - 0039-9140 SN - 1873-3573 VL - 144 SP - 71 EP - 79 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nojima, Hiroyuki A1 - Freeman, Christopher M. A1 - Schuster, Rebecca M. A1 - Japtok, Lukasz A1 - Kleuser, Burkhard A1 - Edwards, Michael J. A1 - Gulbins, Erich A1 - Lentsch, Alex B. T1 - Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate JF - Journal of hepatology N2 - Background & Aims: Exosomes are small membrane vesicles involved in intercellular communication. Hepatocytes are known to release exosomes, but little is known about their biological function. We sought to determine if exosomes derived from hepatocytes contribute to liver repair and regeneration after injury. Methods: Exosomes derived from primary murine hepatocytes were isolated and characterized biochemically and biophysically. Using cultures of primary hepatocytes, we tested whether hepatocyte exosomes induced proliferation of hepatocytes in vitro. Using models of ischemia/reperfusion injury and partial hepatectomy, we evaluated whether hepatocyte exosomes promote hepatocyte proliferation and liver regeneration in vivo. Results: Hepatocyte exosomes, but not exosomes from other liver cell types, induce dose-dependent hepatocyte proliferation in vitro and in vivo. Mechanistically, hepatocyte exosomes directly fuse with target hepatocytes and transfer neutral ceramidase and sphingosine kinase 2 (SK2) causing increased synthesis of sphingosine-1-phosphate (S1P) within target hepatocytes. Ablation of exosomal SK prevents the proliferative effect of exosomes. After ischemia/reperfusion injury, the number of circulating exosomes with proliferative effects increases. Conclusions: Our data shows that hepatocyte-derived exosomes deliver the synthetic machinery to form S1P in target hepatocytes resulting in cell proliferation and liver regeneration after ischemia/reperfusion injury or partial hepatectomy. These findings represent a potentially novel new contributing mechanism of liver regeneration and have important implications for new therapeutic approaches to acute and chronic liver disease. (C) 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved. KW - Liver injury KW - Sphingolipids KW - Sphingosine kinase KW - Ischemia/reperfusion KW - Transplantation Y1 - 2016 U6 - https://doi.org/10.1016/j.jhep.2015.07.030 SN - 0168-8278 SN - 1600-0641 VL - 64 SP - 60 EP - 68 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Henry, Brian D. A1 - Neill, Daniel R. A1 - Becker, Katrin Anne A1 - Gore, Suzanna A1 - Bricio-Moreno, Laura A1 - Ziobro, Regan A1 - Edwards, Michael J. A1 - Muehlemann, Kathrin A1 - Steinmann, Joerg A1 - Kleuser, Burkhard A1 - Japtok, Lukasz A1 - Luginbuehl, Miriam A1 - Wolfmeier, Heidi A1 - Scherag, Andre A1 - Gulbins, Erich A1 - Kadioglu, Aras A1 - Draeger, Annette A1 - Babiychuk, Eduard B. T1 - Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice JF - Nature biotechnology : the science and business of biotechnology N2 - Gram-positive bacterial pathogens that secrete cytotoxic pore-forming toxins, such as Staphylococcus aureus and Streptococcus pneumoniae, cause a substantial burden of disease. Inspired by the principles that govern natural toxin-host interactions, we have engineered artificial liposomes that are tailored to effectively compete with host cells for toxin binding. Liposome-bound toxins are unable to lyse mammalian cells in vitro. We use these artificial liposomes as decoy targets to sequester bacterial toxins that are produced during active infection in vivo. Administration of artificial liposomes within 10 h after infection rescues mice from septicemia caused by S. aureus and S. pneumoniae, whereas untreated mice die within 24-33 h. Furthermore, liposomes protect mice against invasive pneumococcal pneumonia. Composed exclusively of naturally occurring lipids, tailored liposomes are not bactericidal and could be used therapeutically either alone or in conjunction with antibiotics to combat bacterial infections and to minimize toxin-induced tissue damage that occurs during bacterial clearance. Y1 - 2015 U6 - https://doi.org/10.1038/nbt.3037 SN - 1087-0156 SN - 1546-1696 VL - 33 IS - 1 SP - 81 EP - U295 PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Reichel, Martin A1 - Rhein, Cosima A1 - Hofmann, Lena M. A1 - Monti, Juliana A1 - Japtok, Lukasz A1 - Langgartner, Dominik A1 - Füchsl, Andrea M. A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Hellerbrand, Claus A1 - Reber, Stefan O. A1 - Kornhuber, Johannes T1 - Chronic Psychosocial Stress in Mice Is Associated With Increased Acid Sphingomyelinase Activity in Liver and Serum and With Hepatic C16:0-Ceramide Accumulation JF - Frontiers in Psychiatry N2 - Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28% (P = 0.006) and secretory Asm activity by 47% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-alpha (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders. KW - chronic psychosocial stress KW - acid sphingomyelinase KW - ceramide KW - sphingolipid metabolism KW - chronic subordinate colony housing (CSC) KW - liver metabolism Y1 - 2018 U6 - https://doi.org/10.3389/fpsyt.2018.00496 SN - 1664-0640 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Nojima, Hiroyuki A1 - Konishi, Takanori A1 - Freeman, Christopher M. A1 - Schuster, Rebecca M. A1 - Japtok, Lukasz A1 - Kleuser, Burkhard A1 - Edwards, Michael J. A1 - Gulbins, Erich A1 - Lentsch, Alex B. T1 - Chemokine Receptors, CXCR1 and CXCR2, Differentially Regulate Exosome Release in Hepatocytes JF - PLoS one N2 - Exosomes are small membrane vesicles released by different cell types, including hepatocytes, that play important roles in intercellular communication. We have previously demonstrated that hepatocyte-derived exosomes contain the synthetic machinery to form sphingosine-1-phosphate (S1P) in target hepatocytes resulting in proliferation and liver regeneration after ischemia/reperfusion (I/R) injury. We also demonstrated that the chemokine receptors, CXCR1 and CXCR2, regulate liver recovery and regeneration after I/R injury. In the current study, we sought to determine if the regulatory effects of CXCR1 and CXCR2 on liver recovery and regeneration might occur via altered release of hepatocyte exosomes. We found that hepatocyte release of exosomes was dependent upon CXCR1 and CXCR2. CXCR1-deficient hepatocytes produced fewer exosomes, whereas CXCR2-deficient hepatocytes produced more exosomes compared to their wild-type controls. In CXCR2-deficient hepatocytes, there was increased activity of neutral sphingomyelinase (Nsm) and intracellular ceramide. CXCR1-deficient hepatocytes had no alterations in Nsm activity or ceramide production. Interestingly, exosomes from CXCR1-deficient hepatocytes had no effect on hepatocyte proliferation, due to a lack of neutral ceramidase and sphingosine kinase. The data demonstrate that CXCR1 and CXCR2 regulate hepatocyte exosome release. The mechanism utilized by CXCR1 remains elusive, but CXCR2 appears to modulate Nsm activity and resultant production of ceramide to control exosome release. CXCR1 is required for packaging of enzymes into exosomes that mediate their hepatocyte proliferative effect. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0161443 SN - 1932-6203 VL - 11 SP - 6900 EP - + PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Naser, Eyad A1 - Kadow, Stephanie A1 - Schumacher, Fabian A1 - Mohamed, Zainelabdeen H. A1 - Kappe, Christian A1 - Hessler, Gabriele A1 - Pollmeier, Barbara A1 - Kleuser, Burkhard A1 - Arenz, Christoph A1 - Becker, Katrin Anne A1 - Gulbins, Erich A1 - Carpinteiro, Alexander T1 - Characterization of the small molecule ARC39 BT - a direct and specific inhibitor of acid sphingomyelinase in vitro[S] JF - Journal of Lipid Research N2 - Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM's catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo. KW - sphingolipids KW - sphingomyelin KW - cerami-des KW - lipid metabolism KW - enzymology KW - lysosome KW - lysosomal hydrolases KW - acid ceramidase KW - bisphosphonates KW - functional inhibitors of acid sphin-gomyelinase KW - 1-aminodecylidene bis-phosphonic acid Y1 - 2021 U6 - https://doi.org/10.1194/jlr.RA120000682 SN - 1539-7262 SN - 0022-2275 VL - 61 IS - 6 SP - 896 EP - 910 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - JOUR A1 - Beckmann, Nadine A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Nomellini, Vanessa A1 - Caldwell, Charles C. T1 - Burn injury impairs neutrophil chemotaxis through increased ceramide JF - Shock : injury, inflammation, and sepsis, laboratory and clinical approaches N2 - Infection is a common and often deadly complication after burn injury. A major underlying factor is burn-induced immune dysfunction, particularly with respect to neutrophils as the primary responders to infection. Temporally after murine scald injury, we demonstrate impaired bone marrow neutrophil chemotaxis toward CXCL1 ex vivo. Additionally, we observed a reduced recruitment of neutrophils to the peritoneal after elicitation 7 days after injury. We demonstrate that neutrophil ceramide levels increase after burn injury, and this is associated with decreased expression of CXCR2 and blunted chemotaxis. A major signaling event upon CXCR2 activation is Akt phosphorylation and this was reduced when ceramide was elevated. In contrast, PTEN levels were elevated and PTEN-inhibition elevated phospho-Akt levels and mitigated the burn-induced neutrophil chemotaxis defect. Altogether, this study identifies a newly described pathway of ceramide-mediated suppression of neutrophil chemotaxis after burn injury and introduces potential targets to mitigate this defect and reduce infection-related morbidity and mortality after burn. KW - Acid sphingomyelinase KW - Akt KW - burn injury KW - ceramide KW - CXCR2 KW - immune KW - dysfunction KW - neutrophil chemotaxis KW - PTEN Y1 - 2021 U6 - https://doi.org/10.1097/SHK.0000000000001693 SN - 1073-2322 SN - 1540-0514 VL - 56 IS - 1 SP - 125 EP - 132 PB - Lippincott Williams & Wilkins CY - Hagerstown, Md. ER - TY - JOUR A1 - Gulbins, Anne A1 - Schumacher, Fabian A1 - Becker, Katrin Anne A1 - Wilker, Barbara A1 - Soddemann, Matthias A1 - Boldrin, Francesco A1 - Müller, Christian P. A1 - Edwards, Michael J. A1 - Goodman, Michael A1 - Caldwell, Charles C. A1 - Kleuser, Burkhard A1 - Kornhuber, Johannes A1 - Szabo, Ildiko A1 - Gulbins, Erich T1 - Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide JF - Molecular psychiatry N2 - Major depressive disorder (MDD) is a common and severe disease characterized by mood changes, somatic alterations, and often suicide. MDD is treated with antidepressants, but the molecular mechanism of their action is unknown. We found that widely used antidepressants such as amitriptyline and fluoxetine induce autophagy in hippocampal neurons via the slow accumulation of sphingomyelin in lysosomes and Golgi membranes and of ceramide in the endoplasmic reticulum (ER). ER ceramide stimulates phosphatase 2A and thereby the autophagy proteins Ulk, Beclin, Vps34/Phosphatidylinositol 3-kinase, p62, and Lc3B. Although treatment with amitriptyline or fluoxetine requires at least 12 days to achieve sphingomyelin accumulation and the subsequent biochemical and cellular changes, direct inhibition of sphingomyelin synthases with tricyclodecan-9-yl-xanthogenate (D609) results in rapid (within 3 days) accumulation of ceramide in the ER, activation of autophagy, and reversal of biochemical and behavioral signs of stress-induced MDD. Inhibition of Beclin blocks the antidepressive effects of amitriptyline and D609 and induces cellular and behavioral changes typical of MDD. These findings identify sphingolipid-controlled autophagy as an important target for antidepressive treatment methods and provide a rationale for the development of novel antidepressants that act within a few days. Y1 - 2018 U6 - https://doi.org/10.1038/s41380-018-0090-9 SN - 1359-4184 SN - 1476-5578 VL - 23 IS - 12 SP - 2324 EP - 2346 PB - Nature Publ. Group CY - London ER -