TY - JOUR A1 - Fandinno, Jorge A1 - Lifschitz, Vladimir A1 - Lühne, Patrick A1 - Schaub, Torsten H. T1 - Verifying tight logic programs with Anthem and Vampire JF - Theory and practice of logic programming N2 - This paper continues the line of research aimed at investigating the relationship between logic programs and first-order theories. We extend the definition of program completion to programs with input and output in a subset of the input language of the ASP grounder gringo, study the relationship between stable models and completion in this context, and describe preliminary experiments with the use of two software tools, anthem and vampire, for verifying the correctness of programs with input and output. Proofs of theorems are based on a lemma that relates the semantics of programs studied in this paper to stable models of first-order formulas. Y1 - 2020 U6 - https://doi.org/10.1017/S1471068420000344 SN - 1471-0684 SN - 1475-3081 VL - 20 IS - 5 SP - 735 EP - 750 PB - Cambridge Univ. Press CY - Cambridge [u.a.] ER - TY - JOUR A1 - Fandinno, Jorge A1 - Laferriere, Francois A1 - Romero, Javier A1 - Schaub, Torsten H. A1 - Son, Tran Cao T1 - Planning with incomplete information in quantified answer set programming JF - Theory and practice of logic programming N2 - We present a general approach to planning with incomplete information in Answer Set Programming (ASP). More precisely, we consider the problems of conformant and conditional planning with sensing actions and assumptions. We represent planning problems using a simple formalism where logic programs describe the transition function between states, the initial states and the goal states. For solving planning problems, we use Quantified Answer Set Programming (QASP), an extension of ASP with existential and universal quantifiers over atoms that is analogous to Quantified Boolean Formulas (QBFs). We define the language of quantified logic programs and use it to represent the solutions different variants of conformant and conditional planning. On the practical side, we present a translation-based QASP solver that converts quantified logic programs into QBFs and then executes a QBF solver, and we evaluate experimentally the approach on conformant and conditional planning benchmarks. KW - answer set programming KW - planning KW - quantified logics Y1 - 2021 U6 - https://doi.org/10.1017/S1471068421000259 SN - 1471-0684 SN - 1475-3081 VL - 21 IS - 5 SP - 663 EP - 679 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Lierler, Yuliya T1 - Modular Answer Set Programming as a formal specification language JF - Theory and practice of logic programming N2 - In this paper, we study the problem of formal verification for Answer Set Programming (ASP), namely, obtaining aformal proofshowing that the answer sets of a given (non-ground) logic programPcorrectly correspond to the solutions to the problem encoded byP, regardless of the problem instance. To this aim, we use a formal specification language based on ASP modules, so that each module can be proved to capture some informal aspect of the problem in an isolated way. This specification language relies on a novel definition of (possibly nested, first order)program modulesthat may incorporate local hidden atoms at different levels. Then,verifyingthe logic programPamounts to prove some kind of equivalence betweenPand its modular specification. KW - Answer Set Programming KW - formal specification KW - formal verification KW - modular logic programs Y1 - 2020 U6 - https://doi.org/10.1017/S1471068420000265 SN - 1471-0684 SN - 1475-3081 VL - 20 IS - 5 SP - 767 EP - 782 PB - Cambridge University Press CY - New York ER - TY - JOUR A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian T1 - Gelfond-Zhang aggregates as propositional formulas JF - Artificial intelligence N2 - Answer Set Programming (ASP) has become a popular and widespread paradigm for practical Knowledge Representation thanks to its expressiveness and the available enhancements of its input language. One of such enhancements is the use of aggregates, for which different semantic proposals have been made. In this paper, we show that any ASP aggregate interpreted under Gelfond and Zhang's (GZ) semantics can be replaced (under strong equivalence) by a propositional formula. Restricted to the original GZ syntax, the resulting formula is reducible to a disjunction of conjunctions of literals but the formulation is still applicable even when the syntax is extended to allow for arbitrary formulas (including nested aggregates) in the condition. Once GZ-aggregates are represented as formulas, we establish a formal comparison (in terms of the logic of Here-and-There) to Ferraris' (F) aggregates, which are defined by a different formula translation involving nested implications. In particular, we prove that if we replace an F-aggregate by a GZ-aggregate in a rule head, we do not lose answer sets (although more can be gained). This extends the previously known result that the opposite happens in rule bodies, i.e., replacing a GZ-aggregate by an F-aggregate in the body may yield more answer sets. Finally, we characterize a class of aggregates for which GZ- and F-semantics coincide. KW - Aggregates KW - Answer Set Programming Y1 - 2019 U6 - https://doi.org/10.1016/j.artint.2018.10.007 SN - 0004-3702 SN - 1872-7921 VL - 274 SP - 26 EP - 43 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Aguado, Felicidad A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Pearce, David A1 - Perez, Gilberto A1 - Vidal, Concepcion T1 - Forgetting auxiliary atoms in forks JF - Artificial intelligence N2 - In this work we tackle the problem of checking strong equivalence of logic programs that may contain local auxiliary atoms, to be removed from their stable models and to be forbidden in any external context. We call this property projective strong equivalence (PSE). It has been recently proved that not any logic program containing auxiliary atoms can be reformulated, under PSE, as another logic program or formula without them – this is known as strongly persistent forgetting. In this paper, we introduce a conservative extension of Equilibrium Logic and its monotonic basis, the logic of Here-and-There, in which we deal with a new connective ‘|’ we call fork. We provide a semantic characterisation of PSE for forks and use it to show that, in this extension, it is always possible to forget auxiliary atoms under strong persistence. We further define when the obtained fork is representable as a regular formula. KW - Answer set programming KW - Non-monotonic reasoning KW - Equilibrium logic KW - Denotational semantics KW - Forgetting KW - Strong equivalence Y1 - 2019 U6 - https://doi.org/10.1016/j.artint.2019.07.005 SN - 0004-3702 SN - 1872-7921 VL - 275 SP - 575 EP - 601 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Garea, Javier A1 - Romero, Javier A1 - Schaub, Torsten H. T1 - Eclingo BT - a solver for epistemic logic programs JF - Theory and practice of logic programming N2 - We describe eclingo, a solver for epistemic logic programs under Gelfond 1991 semantics built upon the Answer Set Programming system clingo. The input language of eclingo uses the syntax extension capabilities of clingo to define subjective literals that, as usual in epistemic logic programs, allow for checking the truth of a regular literal in all or in some of the answer sets of a program. The eclingo solving process follows a guess and check strategy. It first generates potential truth values for subjective literals and, in a second step, it checks the obtained result with respect to the cautious and brave consequences of the program. This process is implemented using the multi-shot functionalities of clingo. We have also implemented some optimisations, aiming at reducing the search space and, therefore, increasing eclingo 's efficiency in some scenarios. Finally, we compare the efficiency of eclingo with two state-of-the-art solvers for epistemic logic programs on a pair of benchmark scenarios and show that eclingo generally outperforms their obtained results. KW - Answer Set Programming KW - Epistemic Logic Programs KW - Non-Monotonic KW - Reasoning KW - Conformant Planning Y1 - 2020 U6 - https://doi.org/10.1017/S1471068420000228 SN - 1471-0684 SN - 1475-3081 VL - 20 IS - 6 SP - 834 EP - 847 PB - Cambridge Univ. Press CY - New York ER -