TY - JOUR A1 - He, Zhihua A1 - Unger-Shayesteh, Katy A1 - Vorogushyn, Sergiy A1 - Weise, Stephan M. A1 - Kalashnikova, Olga A1 - Gafurov, Abror A1 - Duethmann, Doris A1 - Barandun, Martina A1 - Merz, Bruno T1 - Constraining hydrological model parameters using water isotopic compositions in a glacierized basin, Central Asia JF - Journal of hydrology N2 - Water stable isotope signatures can provide valuable insights into the catchment internal runoff processes. However, the ability of the water isotope data to constrain the internal apportionments of runoff components in hydrological models for glacierized basins is not well understood. This study developed an approach to simultaneously model the water stable isotopic compositions and runoff processes in a glacierized basin in Central Asia. The fractionation and mixing processes of water stable isotopes in and from the various water sources were integrated into a glacio-hydrological model. The model parameters were calibrated on discharge, snow cover and glacier mass balance data, and additionally isotopic composition of streamflow. We investigated the value of water isotopic compositions for the calibration of model parameters, in comparison to calibration methods without using such measurements. Results indicate that: (1) The proposed isotope-hydrological integrated modeling approach was able to reproduce the isotopic composition of streamflow, and improved the model performance in the evaluation period; (2) Involving water isotopic composition for model calibration reduced the model parameter uncertainty, and helped to reduce the uncertainty in the quantification of runoff components; (3) The isotope-hydrological integrated modeling approach quantified the contributions of runoff components comparably to a three-component tracer-based end-member mixing analysis method for summer peak flows, and required less water tracer data. Our findings demonstrate the value of water isotopic compositions to improve the quantification of runoff components using hydrological models in glacierized basins. KW - Water stable isotope KW - Isotope-hydrological integrated modeling KW - Quantification of runoff components KW - Glacierized basins Y1 - 2019 U6 - https://doi.org/10.1016/j.jhydrol.2019.01.048 SN - 0022-1694 SN - 1879-2707 VL - 571 SP - 332 EP - 348 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Duethmann, Doris A1 - Bolch, Tobias A1 - Farinotti, Daniel A1 - Kriegel, David A1 - Vorogushyn, Sergiy A1 - Merz, Bruno A1 - Pieczonka, Tino A1 - Jiang, Tong A1 - Su, Buda A1 - Güntner, Andreas T1 - Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia JF - Water resources research N2 - Observed streamflow of headwater catchments of the Tarim River (Central Asia) increased by about 30% over the period 1957-2004. This study aims at assessing to which extent these streamflow trends can be attributed to changes in air temperature or precipitation. The analysis includes a data-based approach using multiple linear regression and a simulation-based approach using a hydrological model. The hydrological model considers changes in both glacier area and surface elevation. It was calibrated using a multiobjective optimization algorithm with calibration criteria based on glacier mass balance and daily and interannual variations of discharge. The individual contributions to the overall streamflow trends from changes in glacier geometry, temperature, and precipitation were assessed using simulation experiments with a constant glacier geometry and with detrended temperature and precipitation time series. The results showed that the observed changes in streamflow were consistent with the changes in temperature and precipitation. In the Sari-Djaz catchment, increasing temperatures and related increase of glacier melt were identified as the dominant driver, while in the Kakshaal catchment, both increasing temperatures and increasing precipitation played a major role. Comparing the two approaches, an advantage of the simulation-based approach is the fact that it is based on process-based relationships implemented in the hydrological model instead of statistical links in the regression model. However, data-based approaches are less affected by model parameter and structural uncertainties and typically fast to apply. A complementary application of both approaches is recommended. KW - trend analysis KW - data-based KW - simulation-based KW - multiobjective calibration KW - hydrological modeling KW - glacier melt Y1 - 2015 U6 - https://doi.org/10.1002/2014WR016716 SN - 0043-1397 SN - 1944-7973 VL - 51 IS - 6 SP - 4727 EP - 4750 PB - American Geophysical Union CY - Washington ER -