TY - JOUR A1 - Handy, Mark R. A1 - Schmid, Stefan M. A1 - Bousquet, Romain A1 - Kissling, Eduard A1 - Bernoulli, Daniel T1 - Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps N2 - A new reconstruction of Alpine Tethys combines plate-kinematic modelling with a wealth of geological data and seismic tomography to shed light on its evolution, from sea-floor spreading through subduction to collision in the Alps. Unlike previous models, which relate the fate of Alpine Tethys solely to relative motions of Africa, Iberia and Europe during opening of the Atlantic, our reconstruction additionally invokes independent microplates whose motions are constrained primarily by the geological record. The motions of these microplates (Adria, Iberia, Alcapia, Alkapecia, and Tiszia) relative to both Africa and Europe during Late Cretaceous to Cenozoic time involved the subduction of remnant Tethyan basins during the following three stages that are characterized by contrasting plate motions and driving forces: (1) 131-84 Ma intra-oceanic subduction of the Ligurian part of Alpine Tethys attached to Iberia coincided with Eo-alpine orogenesis in the Alcapia microplate, north of Africa. These events were triggered primarily by foundering of the older (170-131 Ma) Neotethyan subduction slab along the NE margin of the composite African-Adriatic plate; subduction was linked by a sinistral transform system to E-W opening of the Valais part of Alpine Tethys; (2) 84-35 Ma subduction of primarily the Piemont and Valais parts of Alpine Tethys which were then attached to the European plate beneath the overriding African and later Adriatic plates. NW translation of Adria with respect to Africa was accommodated primarily by slow widening of the Ionian Sea; (3) 35 Ma-Recent rollback subduction of the Ligurian part of Alpine Tethys coincided with Western Alpine orogenesis and involved the formation of the Gibraltar and Calabrian arcs. Rapid subduction and arc formation were driven primarily by the pull of the gravitationally unstable, retreating Adriatic and African slabs during slow convergence of Africa and Europe. The upper European-Iberian plate stretched to accommodate this slab retreat in a very mobile fashion, while the continental core of the Adriatic microplate acted as a rigid indenter within the Alpine collisional zone. The subducted lithosphere in this reconstruction can be correlated with slab material imaged by seismic tomography beneath the Alps and Apennines, as well as beneath parts of the Pannonian Basin, the Adriatic Sea, the Ligurian Sea, and the Western Mediterranean. The predicted amount of subducted lithosphere exceeds the estimated volume of slab material residing at depth by some 10-30%, indicating that parts of slabs may be superposed within the mantle transition zone and/or that some of this subducted lithosphere became seismically transparent. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/00128252 U6 - https://doi.org/10.1016/j.earscirev.2010.06.002 SN - 0012-8252 ER - TY - JOUR A1 - Eberli, Gregor P. A1 - Bernoulli, Daniel A1 - Vecsei, Adam A1 - Sekti, Rizky A1 - Grasmueck, Mark A1 - Lüdmann, Thomas A1 - Anselmetti, Flavio S. A1 - Mutti, Maria A1 - Della Porta, Giovanna T1 - A Cretaceous carbonate delta drift in the Montagna della Maiella, Italy JF - Sedimentology : the journal of the International Association of Sedimentologists N2 - The Upper Cretaceous (Campanian-Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is compared to newly discovered contourite drifts in the Maldives. Like the drift deposits in the Maldives, the Orfento Formation fills a channel and builds a Miocene delta-shaped and mounded sedimentary body in the basin that is similar in size to the approximately 350 km(2) large coarse-grained bioclastic Miocene delta drifts in the Maldives. The composition of the bioclastic wedge of the Orfento Formation is also exclusively bioclastic debris sourced from the shallow-water areas and reworked clasts of the Orfento Formation itself. In the near mud-free succession, age-diagnostic fossils are sparse. The depositional textures vary from wackestone to float-rudstone and breccia/conglomerates, but rocks with grainstone and rudstone textures are the most common facies. In the channel, lensoid convex-upward breccias, cross-cutting channelized beds and thick grainstone lobes with abundant scours indicate alternating erosion and deposition from a high-energy current. In the basin, the mounded sedimentary body contains lobes with a divergent progradational geometry. The lobes are built by decametre thick composite megabeds consisting of sigmoidal clinoforms that typically have a channelized topset, a grainy foreset and a fine-grained bottomset with abundant irregular angular clasts. Up to 30 m thick channels filled with intraformational breccias and coarse grainstones pinch out downslope between the megabeds. In the distal portion of the wedge, stacked grainstone beds with foresets and reworked intraclasts document continuous sediment reworking and migration. The bioclastic wedge of the Orfento Formation has been variously interpreted as a succession of sea-level controlled slope deposits, a shoaling shoreface complex, or a carbonate tidal delta. Current-controlled delta drifts in the Maldives, however, offer a new interpretation because of their similarity in architecture and composition. These similarities include: (i) a feeder channel opening into the basin; (ii) an excavation moat at the exit of the channel; (iii) an overall mounded geometry with an apex that is in shallower water depth than the source channel; (iv) progradation of stacked lobes; (v) channels that pinch out in a basinward direction; and (vi) smaller channelized intervals that are arranged in a radial pattern. As a result, the Upper Cretaceous (Campanian-Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is here interpreted as a carbonate delta drift. KW - Carbonate contourite drift KW - delta drift KW - Maiella Mountains KW - Orfento Formation KW - prograding lobes Y1 - 2019 U6 - https://doi.org/10.1111/sed.12590 SN - 0037-0746 SN - 1365-3091 VL - 66 IS - 4 SP - 1266 EP - 1301 PB - Wiley CY - Hoboken ER -