TY - JOUR A1 - Luderer, Gunnar A1 - Madeddu, Silvia A1 - Merfort, Leon A1 - Ueckerdt, Falko A1 - Pehl, Michaja A1 - Pietzcker, Robert C. A1 - Rottoli, Marianna A1 - Schreyer, Felix A1 - Bauer, Nico A1 - Baumstark, Lavinia A1 - Bertram, Christoph A1 - Dirnaichner, Alois A1 - Humpenöder, Florian A1 - Levesque, Antoine A1 - Popp, Alexander A1 - Rodrigues, Renato A1 - Strefler, Jessica A1 - Kriegler, Elmar T1 - Impact of declining renewable energy costs on electrification in low-emission scenarios JF - Nature energy N2 - Cost degression in photovoltaics, wind-power and battery storage has been faster than previously anticipated. In the future, climate policy to limit global warming to 1.5–2 °C will make carbon-based fuels increasingly scarce and expensive. Here we show that further progress in solar- and wind-power technology along with carbon pricing to reach the Paris Climate targets could make electricity cheaper than carbon-based fuels. In combination with demand-side innovation, for instance in e-mobility and heat pumps, this is likely to induce a fundamental transformation of energy systems towards a dominance of electricity-based end uses. In a 1.5 °C scenario with limited availability of bioenergy and carbon dioxide removal, electricity could account for 66% of final energy by mid-century, three times the current levels and substantially higher than in previous climate policy scenarios assessed by the Intergovernmental Panel on Climate Change. The lower production of bioenergy in our high-electrification scenarios markedly reduces energy-related land and water requirements. KW - climate-change mitigation KW - energy modelling KW - renewable energy Y1 - 2021 U6 - https://doi.org/10.1038/s41560-021-00937-z SN - 2058-7546 N1 - Corrigendum: https://doi.org/10.1038/s41560-022-01000-1 VL - 7 IS - 1 SP - 32 EP - 42 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Schultes, Anselm A1 - Piontek, Franziska A1 - Soergel, Bjoern A1 - Rogelj, Joeri A1 - Baumstark, Lavinia A1 - Kriegler, Elmar A1 - Edenhofer, Ottmar A1 - Luderer, Gunnar T1 - Economic damages from on-going climate change imply deeper near-term emission cuts JF - Environmental research letters N2 - Pathways toward limiting global warming to well below 2 ∘C, as used by the IPCC in the Fifth Assessment Report, do not consider the climate impacts already occurring below 2 ∘C. Here we show that accounting for such damages significantly increases the near-term ambition of transformation pathways. We use econometric estimates of climate damages on GDP growth and explicitly model the uncertainty in the persistence time of damages. The Integrated Assessment Model we use includes the climate system and mitigation technology detail required to derive near-term policies. We find an optimal carbon price of $115 per tonne of CO2 in 2030. The long-term persistence of damages, while highly uncertain, is a main driver of the near-term carbon price. Accounting for damages on economic growth increases the gap between the currently pledged nationally determined contributions and the welfare-optimal 2030 emissions by two thirds, compared to pathways considering the 2 ∘C limit only. KW - climate change KW - climate mitigation KW - climate impacts KW - integrated assessment Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac27ce SN - 1748-9326 VL - 16 IS - 10 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - Soergel, Bjoern A1 - Kriegler, Elmar A1 - Weindl, Isabelle A1 - Rauner, Sebastian A1 - Dirnaichner, Alois A1 - Ruhe, Constantin A1 - Hofmann, Matthias A1 - Bauer, Nico A1 - Bertram, Christoph A1 - Bodirsky, Benjamin Leon A1 - Leimbach, Marian A1 - Leininger, Julia A1 - Levesque, Antoine A1 - Luderer, Gunnar A1 - Pehl, Michaja A1 - Wingens, Christopher A1 - Baumstark, Lavinia A1 - Beier, Felicitas A1 - Dietrich, Jan Philipp A1 - Humpenöder, Florian A1 - von Jeetze, Patrick A1 - Klein, David A1 - Koch, Johannes A1 - Pietzcker, Robert C. A1 - Strefler, Jessica A1 - Lotze-Campen, Hermann A1 - Popp, Alexander T1 - A sustainable development pathway for climate action within the UN 2030 Agenda JF - Nature climate change N2 - Ambitious climate policies, as well as economic development, education, technological progress and less resource-intensive lifestyles, are crucial elements for progress towards the UN Sustainable Development Goals (SDGs). However, using an integrated modelling framework covering 56 indicators or proxies across all 17 SDGs, we show that they are insufficient to reach the targets. An additional sustainable development package, including international climate finance, progressive redistribution of carbon pricing revenues, sufficient and healthy nutrition and improved access to modern energy, enables a more comprehensive sustainable development pathway. We quantify climate and SDG outcomes, showing that these interventions substantially boost progress towards many aspects of the UN Agenda 2030 and simultaneously facilitate reaching ambitious climate targets. Nonetheless, several important gaps remain; for example, with respect to the eradication of extreme poverty (180 million people remaining in 2030). These gaps can be closed by 2050 for many SDGs while also respecting the 1.5 °C target and several other planetary boundaries. KW - climate-change mitigation KW - climate-change policy KW - socioeconomic scenarios KW - sustainability Y1 - 2021 U6 - https://doi.org/10.1038/s41558-021-01098-3 SN - 1758-678X SN - 1758-6798 VL - 11 IS - 8 SP - 656 EP - 664 PB - Nature Publishing Group CY - London ER -