TY - JOUR A1 - von Reppert, Alexander A1 - Sarhan, Radwan Mohamed A1 - Stete, Felix A1 - Pudell, Jan-Etienne A1 - Del Fatti, N. A1 - Crut, A. A1 - Koetz, Joachim A1 - Liebig, Ferenc A1 - Prietzel, Claudia Christina A1 - Bargheer, Matias T1 - Watching the Vibration and Cooling of Ultrathin Gold Nanotriangles by Ultrafast X-ray Diffraction JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - We study the vibrations of ultrathin gold nanotriangles upon optical excitation of the electron gas by ultrafast X-ray diffraction. We quantitatively measure the strain evolution in these highly asymmetric nano-objects, providing a direct estimation of the amplitude and phase of the excited vibrational motion. The maximal strain value is well reproduced by calculations addressing pump absorption by the nanotriangles and their resulting thermal expansion. The amplitude and phase of the out-of-plane vibration mode with 3.6 ps period dominating the observed oscillations are related to two distinct excitation mechanisms. Electronic and phonon pressures impose stresses with different time dependences. The nanosecond relaxation of the expansion yields a direct temperature sensing of the nano-object. The presence of a thin organic molecular layer at the nanotriangle/substrate interfaces drastically reduces the thermal conductance to the substrate. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.6b11651 SN - 1932-7447 VL - 120 SP - 28894 EP - 28899 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Liebig, Ferenc A1 - Sarhan, Radwan Mohamed A1 - Prietzel, Claudia Christina A1 - Thünemann, Andreas F. A1 - Bargheer, Matias A1 - Koetz, Joachim T1 - Undulated Gold Nanoplatelet Superstructures BT - In Situ Growth of Hemispherical Gold Nanoparticles onto the Surface of Gold Nanotriangles JF - Langmuir N2 - Negatively charged flat gold nanotriangles, formed in a vesicular template phase and separated by an AOT-micelle-based depletion flocculation, were reloaded by adding a cationic polyelectrolyte, that is, a hyperbranched polyethylenimine (PEI). Heating the system to 100 degrees C in the presence of a gold chloride solution, the reduction process leads to the formation of gold nanoparticles inside the polymer shell surrounding the nanoplatelets. The gold nanoparticle formation is investigated by UV-vis spectroscopy, small-angle X-ray scattering, and dynamic light scattering measurements in combination with transmission electron microscopy. Spontaneously formed gold clusters in the hyperbranched PEI shell with an absorption maximum at 350 nm grow on the surface of the nanotriangles as hemispherical particles with diameters of similar to 6 nm. High-resolution micrographs show that the hemispherical gold particles are crystallized onto the {111} facets on the bottom and top of the platelet as well as on the edges without a grain boundary. Undulated gold nanoplatelet superstructures with special properties become available, which show a significantly modified performance in SERS-detected photocatalysis regarding both reactivity and enhancement factor. Y1 - 2018 U6 - https://doi.org/10.1021/acs.langmuir.7b02898 SN - 0743-7463 VL - 34 IS - 15 SP - 4584 EP - 4594 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - von Reppert, Alexander A1 - Mattern, Maximilian A1 - Pudell, Jan-Etienne A1 - Zeuschner, Steffen Peer A1 - Dumesnil, Karine A1 - Bargheer, Matias T1 - Unconventional picosecond strain pulses resulting from the saturation of magnetic stress within a photoexcited rare earth layer JF - Structural Dynamics N2 - Optical excitation of spin-ordered rare earth metals triggers a complex response of the crystal lattice since expansive stresses from electron and phonon excitations compete with a contractive stress induced by spin disorder. Using ultrafast x-ray diffraction experiments, we study the layer specific strain response of a dysprosium film within a metallic heterostructure upon femtosecond laser-excitation. The elastic and diffusive transport of energy to an adjacent, non-excited detection layer clearly separates the contributions of strain pulses and thermal excitations in the time domain. We find that energy transfer processes to magnetic excitations significantly modify the observed conventional bipolar strain wave into a unipolar pulse. By modeling the spin system as a saturable energy reservoir that generates substantial contractive stress on ultrafast timescales, we can reproduce the observed strain response and estimate the time- and space dependent magnetic stress. The saturation of the magnetic stress contribution yields a non-monotonous total stress within the nanolayer, which leads to unconventional picosecond strain pulses. KW - Strain measurement KW - Photoexcitations KW - Crystal lattices KW - Femtosecond lasers KW - Thermal effects KW - Heterostructures KW - Ultrafast X-rays KW - Phonons Y1 - 2020 U6 - https://doi.org/10.1063/1.5145315 SN - 2329-7778 VL - 7 IS - 024303 PB - AIP Publishing LLC CY - Melville, NY ER - TY - JOUR A1 - Koc, Azize A1 - Reinhardt, M. A1 - von Reppert, Alexander A1 - Roessle, Matthias A1 - Leitenberger, Wolfram A1 - Dumesnil, K. A1 - Gaal, Peter A1 - Zamponi, Flavio A1 - Bargheer, Matias T1 - Ultrafast x-ray diffraction thermometry measures the influence of spin excitations on the heat transport through nanolayers JF - Physical review : B, Condensed matter and materials physics N2 - We investigate the heat transport through a rare earth multilayer system composed of yttrium (Y), dysprosium (Dy), and niobium (Nb) by ultrafast x-ray diffraction. This is an example of a complex heat flow problem on the nanoscale, where several different quasiparticles carry the heat and conserve a nonequilibrium for more than 10 ns. The Bragg peak positions of each layer represent layer-specific thermometers that measure the energy flow through the sample after excitation of the Y top layer with fs-laser pulses. In an experiment-based analytic solution to the nonequilibrium heat transport problem, we derive the individual contributions of the spins and the coupled electron-lattice system to the heat conduction. The full characterization of the spatiotemporal energy flow at different starting temperatures reveals that the spin excitations of antiferromagnetic Dy speed up the heat transport into the Dy layer at low temperatures, whereas the heat transport through this layer and further into the Y and Nb layers underneath is slowed down. The experimental findings are compared to the solution of the heat equation using macroscopic temperature-dependent material parameters without separation of spin and phonon contributions to the heat. We explain why the simulated energy density matches our experiment-based derivation of the heat transport, although the simulated thermoelastic strain in this simulation is not even in qualitative agreement. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.96.014306 SN - 2469-9950 SN - 2469-9969 VL - 96 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Gaal, Peter A1 - Schick, Daniel A1 - Herzog, Marc A1 - Bojahr, Andre A1 - Shayduk, Roman A1 - Goldshteyn, Jevgeni A1 - Leitenberger, Wolfram A1 - Vrejoiu, Ionela A1 - Khakhulin, Dmitry A1 - Wulff, Michael A1 - Bargheer, Matias T1 - Ultrafast switching of hard X-rays JF - Journal of synchrotron radiation N2 - A new concept for shortening hard X-ray pulses emitted from a third-generation synchrotron source down to few picoseconds is presented. The device, called the PicoSwitch, exploits the dynamics of coherent acoustic phonons in a photo-excited thin film. A characterization of the structure demonstrates switching times of <= 5 ps and a peak reflectivity of similar to 10(-3). The device is tested in a real synchrotron-based pump-probe experiment and reveals features of coherent phonon propagation in a second thin film sample, thus demonstrating the potential to significantly improve the temporal resolution at existing synchrotron facilities. KW - ultrafast X-ray diffraction KW - thin film KW - coherent phonons KW - X-ray switching KW - pulse shortening KW - optical pump X-ray probe KW - time-resolved Y1 - 2014 U6 - https://doi.org/10.1107/S1600577513031949 SN - 0909-0495 SN - 1600-5775 VL - 21 SP - 380 EP - 385 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Woerner, Michael A1 - von Korff Schmising, Clemens A1 - Bargheer, Matias A1 - Zhavoronkov, Nickolai A1 - Vrejoiu, Ionela A1 - Hesse, Dietrich A1 - Alexe, Marin A1 - Elsaesser, Thomas T1 - Ultrafast structural dynamics of perovskite superlattices N2 - Femtosecond x-ray diffraction provides direct insight into the ultrafast reversible lattice dynamics of materials with a perovskite structure. Superlattice (SL) structures consisting of a sequence of nanometer-thick layer pairs allow for optically inducing a tailored stress profile that drives the lattice motions and for limiting the influence of strain propagation on the observed dynamics. We demonstrate this concept in a series of diffraction experiments with femtosecond time resolution, giving detailed information on the ultrafast lattice dynamics of ferroelectric and ferromagnetic superlattices. Anharmonically coupled lattice motions in a SrRuO3/PbZr0.2Ti0.8O3 (SRO/ PZT) SL lead to a switch-off of the electric polarizations on a time scale of the order of 1 ps. Ultrafast magnetostriction of photoexcited SRO layers is demonstrated in a SRO/SrTiO3 (STO) SL. Y1 - 2009 UR - http://www.springerlink.com/content/100501 U6 - https://doi.org/10.1007/s00339-009-5174-6 SN - 0947-8396 ER - TY - JOUR A1 - Schick, Daniel A1 - Shayduk, Roman A1 - Bojahr, Andre A1 - Herzog, Marc A1 - von Korff Schmising, Clemens A1 - Gaal, Peter A1 - Bargheer, Matias T1 - Ultrafast reciprocal-space mapping with a convergent beam JF - JOURNAL OF APPLIED CRYSTALLOGRAPHY N2 - A diffractometer setup is presented, based on a laser-driven plasma X-ray source for reciprocal-space mapping with femtosecond temporal resolution. In order to map out the reciprocal space, an X-ray optic with a convergent beam is used with an X-ray area detector to detect symmetrically and asymmetrically diffracted X-ray photons simultaneously. The setup is particularly suited for measuring thin films or imperfect bulk samples with broad rocking curves. For quasi-perfect crystalline samples with insignificant in-plane Bragg peak broadening, the measured reciprocal-space maps can be corrected for the known resolution function of the diffractometer in order to achieve high-resolution rocking curves with improved data quality. In this case, the resolution of the diffractometer is not limited by the convergence of the incoming X-ray beam but is solely determined by its energy bandwidth. Y1 - 2013 U6 - https://doi.org/10.1107/S0021889813020013 SN - 0021-8898 VL - 46 IS - 10 SP - 1372 EP - 1377 PB - WILEY-BLACKWELL CY - HOBOKEN ER - TY - JOUR A1 - Pudell, Jan-Etienne A1 - von Reppert, Alexander A1 - Schick, D. A1 - Zamponi, F. A1 - Rössle, Matthias A1 - Herzog, Marc A1 - Zabel, Hartmut A1 - Bargheer, Matias T1 - Ultrafast negative thermal expansion driven by spin disorder JF - Physical review : B, Condensed matter and materials physics N2 - We measure the transient strain profile in a nanoscale multilayer system composed of yttrium, holmium, and niobium after laser excitation using ultrafast x-ray diffraction. The strain propagation through each layer is determined by transient changes in the material-specific Bragg angles. We experimentally derive the exponentially decreasing stress profile driving the strain wave and show that it closely matches the optical penetration depth. Below the Neel temperature of Ho, the optical excitation triggers negative thermal expansion, which is induced by a quasi-instantaneous contractive stress and a second contractive stress contribution increasing on a 12-ps timescale. These two timescales were recently measured for the spin disordering in Ho [Rettig et al., Phys. Rev. Lett. 116, 257202 (2016)]. As a consequence, we observe an unconventional bipolar strain pulse with an inverted sign traveling through the heterostructure. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevB.99.094304 SN - 2469-9950 SN - 2469-9969 VL - 99 IS - 9 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Herzog, Marc A1 - Leitenberger, Wolfram A1 - Shayduk, Roman A1 - van der Veen, Renske Marjan A1 - Milne, Chris J. A1 - Johnson, Steven Lee A1 - Vrejoiu, Ionela A1 - Alexe, Marin A1 - Hesse, Dietrich A1 - Bargheer, Matias T1 - Ultrafast manipulation of hard x-rays by efficient Bragg switches N2 - We experimentally demonstrate efficient switching of the hard x-ray Bragg reflectivity of a SrRuO3 /SrTiO3 superlattice by optical excitation of large-amplitude coherent acoustic superlattice phonons. The rocking curve changes drastically on a 1 ps timescale. The (0 0 116) reflection is almost extinguished (Delta R/R-0=-0.91), while the (0 0 118) reflection increases by more than an order of magnitude (Delta R/R-0=24.1). The change of the x-ray structure factor depends nonlinearly on the phonon amplitude, allowing manipulation of the x-ray response on a timescale considerably shorter than the phonon period. Numerical simulations for a superlattice with slightly changed geometry and realistic parameters predict a switching-contrast ratio Delta R/R-0 of 700 with high reflectivity. Y1 - 2010 UR - http://apl.aip.org/ U6 - https://doi.org/10.1063/1.3402773 SN - 0003-6951 ER - TY - JOUR A1 - Schick, Daniel A1 - Herzog, Marc A1 - Bojahr, Andre A1 - Leitenberger, Wolfram A1 - Hertwig, Andreas A1 - Shayduk, Roman A1 - Bargheer, Matias T1 - Ultrafast lattice response of photoexcited thin films studied by X-ray diffraction JF - Structural dynamics N2 - Using ultrafast X-ray diffraction, we study the coherent picosecond lattice dynamics of photoexcited thin films in the two limiting cases, where the photoinduced stress profile decays on a length scale larger and smaller than the film thickness. We solve a unifying analytical model of the strain propagation for acoustic impedance-matched opaque films on a semi-infinite transparent substrate, showing that the lattice dynamics essentially depend on two parameters: One for the spatial profile and one for the amplitude of the strain. We illustrate the results by comparison with high-quality ultrafast X-ray diffraction data of SrRuO3 films on SrTiO3 substrates. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. Y1 - 2014 U6 - https://doi.org/10.1063/1.4901228 SN - 2329-7778 VL - 1 IS - 6 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - von Reppert, Alexander A1 - Willig, Lisa A1 - Pudell, Jan-Etienne A1 - Roessle, M. A1 - Leitenberger, Wolfram A1 - Herzog, Marc A1 - Ganss, F. A1 - Hellwig, O. A1 - Bargheer, Matias T1 - Ultrafast laser generated strain in granular and continuous FePt thin films JF - Applied physics letters N2 - We employ ultrafast X-ray diffraction to compare the lattice dynamics of laser-excited continuous and granular FePt films on MgO (100) substrates. Contrary to recent results on free-standing granular films, we observe in both cases a pronounced and long-lasting out-of-plane expansion. We attribute this discrepancy to the in-plane expansion, which is suppressed by symmetry in continuous films. Granular films on substrates are less constrained and already show a reduced out-of-plane contraction. Via the Poisson effect, out-of-plane contractions drive in-plane expansion and vice versa. Consistently, the granular film exhibits a short-lived out-of-plane contraction driven by ultrafast demagnetization which is followed by a reduced and delayed expansion. From the acoustic reflections of the observed strain waves at the film-substrate interface, we extract a 13% reduction of the elastic constants in thin 10 nm FePt films compared to bulk-like samples. (C) 2018 Author(s). Y1 - 2018 U6 - https://doi.org/10.1063/1.5050234 SN - 0003-6951 SN - 1077-3118 VL - 113 IS - 12 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Schick, Daniel A1 - Bojahr, Andre A1 - Herzog, Marc A1 - Shayduk, Roman A1 - von Korff Schmising, Clemens A1 - Bargheer, Matias T1 - Udkm1Dsim-A simulation toolkit for 1D ultrafast dynamics in condensed matter JF - Computer physics communications : an international journal devoted to computational physics and computer programs in physics N2 - The UDKM1DSIM toolbox is a collection of MATLAB (MathWorks Inc.) classes and routines to simulate the structural dynamics and the according X-ray diffraction response in one-dimensional crystalline sample structures upon an arbitrary time-dependent external stimulus, e.g. an ultrashort laser pulse. The toolbox provides the capabilities to define arbitrary layered structures on the atomic level including a rich database of corresponding element-specific physical properties. The excitation of ultrafast dynamics is represented by an N-temperature model which is commonly applied for ultrafast optical excitations. Structural dynamics due to thermal stress are calculated by a linear-chain model of masses and springs. The resulting X-ray diffraction response is computed by dynamical X-ray theory. The UDKM1DSIM toolbox is highly modular and allows for introducing user-defined results at any step in the simulation procedure. Program summary Program title: udkm1Dsim Catalogue identifier: AERH_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERH_v1_0.html Licensing provisions: BSD No. of lines in distributed program, including test data, etc.: 130221 No. of bytes in distributed program, including test data, etc.: 2746036 Distribution format: tar.gz Programming language: Matlab (MathWorks Inc.). Computer: PC/Workstation. Operating system: Running Matlab installation required (tested on MS Win XP -7, Ubuntu Linux 11.04-13.04). Has the code been vectorized or parallelized?: Parallelization for dynamical XRD computations. Number of processors used: 1-12 for Matlab Parallel Computing Toolbox; 1 - infinity for Matlab Distributed Computing Toolbox External routines: Optional: Matlab Parallel Computing Toolbox, Matlab Distributed Computing Toolbox Required (included in the package): mtimesx Fast Matrix Multiply for Matlab by James Tursa, xml io tools by Jaroslaw Tuszynski, textprogressbar by Paul Proteus Nature of problem: Simulate the lattice dynamics of 1D crystalline sample structures due to an ultrafast excitation including thermal transport and compute the corresponding transient X-ray diffraction pattern. Solution method: Restrictions: The program is restricted to 1D sample structures and is further limited to longitudinal acoustic phonon modes and symmetrical X-ray diffraction geometries. Unusual features: The program is highly modular and allows the inclusion of user-defined inputs at any time of the simulation procedure. Running time: The running time is highly dependent on the number of unit cells in the sample structure and other simulation parameters such as time span or angular grid for X-ray diffraction computations. However, the example files are computed in approx. 1-5 min each on a 8 Core Processor with 16 GB RAM available. KW - Ultrafast dynamics KW - Heat diffusion KW - N-temperature model KW - Coherent phonons KW - Incoherent phonons KW - Thermoelasticity KW - Dynamical X-ray theory Y1 - 2014 U6 - https://doi.org/10.1016/j.cpc.2013.10.009 SN - 0010-4655 SN - 1879-2944 VL - 185 IS - 2 SP - 651 EP - 660 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Liebig, Ferenc A1 - Sarhan, Radwan Mohamed A1 - Prietzel, Claudia Christina A1 - Schmitt, Clemens Nikolaus Zeno A1 - Bargheer, Matias A1 - Koetz, Joachim T1 - Tuned Surface-Enhanced raman scattering performance of undulated Au@Ag triangles JF - ACS applied nano materials N2 - Negatively charged ultraflat gold nanotriangles (AuNTs) stabilized by the anionic surfactant dioctyl sodium sulfosuccinate (AOT) were reloaded with the cationic surfactant benzylhexadecyldimethylammonium chloride (BDAC). Because of the spontaneous formation of a catanionic AOT micelle/BDAC bilayer onto the surface of the reloaded AuNTs, a reduction of Ag+ ions leads to the formation of spherical silver nanoparticles (AgNPs). With increasing concentration of AgNPs on the AuNTs, the localized surface plasmon resonance (LSPR) is shifted stepwise from 1300 to 800 nm. The tunable LSPR enables to shift the extinction maximum to the wavelength of the excitation laser of the Raman microscope at 785 nm. Surface-enhanced Raman scattering (SERS) experiments performed under resonance conditions show an SERS enhancement factor of the analyte molecule rhodamine RG6 of 5.1 X 10(5), which can be related to the silver hot spots at the periphery of the undulated gold nanoplatelets. KW - gold nanotriangles KW - catanionic surfactant bilayer KW - undulated nanoplatelets KW - SERS KW - LSPR Y1 - 2018 U6 - https://doi.org/10.1021/acsanm.8b00570 SN - 2574-0970 VL - 1 IS - 4 SP - 1995 EP - 2003 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zeuschner, Steffen Peer A1 - Parpiiev, Tymur A1 - Pezeril, Thomas A1 - Hillion, Arnaud A1 - Dumesnil, Karine A1 - Anane, Abdelmadjid A1 - Pudell, Jan-Etienne A1 - Willig, Lisa A1 - Rössle, Matthias A1 - Herzog, Marc A1 - von Reppert, Alexander A1 - Bargheer, Matias T1 - Tracking picosecond strain pulses in heterostructures that exhibit giant magnetostriction JF - Structural Dynamics N2 - We combine ultrafast X-ray diffraction (UXRD) and time-resolved Magneto-Optical Kerr Effect (MOKE) measurements to monitor the strain pulses in laser-excited TbFe2/Nb heterostructures. Spatial separation of the Nb detection layer from the laser excitation region allows for a background-free characterization of the laser-generated strain pulses. We clearly observe symmetric bipolar strain pulses if the excited TbFe2 surface terminates the sample and a decomposition of the strain wavepacket into an asymmetric bipolar and a unipolar pulse, if a SiO2 glass capping layer covers the excited TbFe2 layer. The inverse magnetostriction of the temporally separated unipolar strain pulses in this sample leads to a MOKE signal that linearly depends on the strain pulse amplitude measured through UXRD. Linear chain model simulations accurately predict the timing and shape of UXRD and MOKE signals that are caused by the strain reflections from multiple interfaces in the heterostructure. KW - Heterostructures KW - Magnetooptical effects KW - Metal oxides KW - Crystal lattices KW - Transition metals KW - Magnetism KW - Ultrafast X-ray diffraction KW - Lasers KW - Bragg peak KW - Phonons Y1 - 2019 U6 - https://doi.org/10.1063/1.5084140 SN - 2329-7778 VL - 6 IS - 2 PB - AIP Publishing LLC CY - Melville, NY ER - TY - JOUR A1 - Mattern, Maximilian A1 - Pudell, Jan-Etienne A1 - Dumesnil, Karine A1 - von Reppert, Alexander A1 - Bargheer, Matias T1 - Towards shaping picosecond strain pulses via magnetostrictive transducers JF - Photoacoustics N2 - Using time-resolved x-ray diffraction, we demonstrate the manipulation of the picosecond strain response of a metallic heterostructure consisting of a dysprosium (Dy) transducer and a niobium (Nb) detection layer by an external magnetic field. We utilize the first-order ferromagnetic–antiferromagnetic phase transition of the Dy layer, which provides an additional large contractive stress upon laser excitation compared to its zerofield response. This enhances the laser-induced contraction of the transducer and changes the shape of the picosecond strain pulses driven in Dy and detected within the buried Nb layer. Based on our experiment with rare-earth metals we discuss required properties for functional transducers, which may allow for novel field-control of the emitted picosecond strain pulses. KW - picosecond ultrasonics KW - magnetostriction KW - ultrafast x-ray diffraction KW - ultrafast photoacoustics KW - nanoscale heat transfer KW - negative thermal expansion Y1 - 2023 U6 - https://doi.org/10.1016/j.pacs.2023.100463 SN - 2213-5979 VL - 30 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tchoumba Kwamen, Christelle Larodia A1 - Rössle, Matthias A1 - Leitenberger, Wolfram A1 - Alexe, Marin A1 - Bargheer, Matias T1 - Time-resolved X-ray diffraction study of the structural dynamics in an epitaxial ferroelectric thin Pb(Zr0.2Ti0.8)O-3 film induced by sub-coercive fields JF - Applied physics letters N2 - The electric field-dependence of structural dynamics in a tetragonal ferroelectric lead zirconate titanate thin film is investigated under subcoercive and above-coercive fields using time-resolved X-ray diffraction. The domain nucleation and growth are monitored in real time during the application of an external field to the prepoled thin film capacitor. We propose the observed broadening of the in-plane peak width of the symmetric 002 Bragg reflection as an indicator of the domain disorder and discuss the processes that change the measured peak intensity. Subcoercive field switching results in remnant disordered domain configurations. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5084104 SN - 0003-6951 SN - 1077-3118 VL - 114 IS - 16 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Gaal, P. A1 - Schick, Daniel A1 - Herzog, Marc A1 - Bojahr, Andre A1 - Shayduk, Roman A1 - Goldshteyn, J. A1 - Navirian, Hengameh A. A1 - Leitenberger, Wolfram A1 - Vrejoiu, Ionela A1 - Khakhulin, D. A1 - Wulff, M. A1 - Bargheer, Matias T1 - Time-domain sampling of x-ray pulses using an ultrafast sample response JF - Applied physics letters N2 - We employ the ultrafast response of a 15.4 nm thin SrRuO3 layer grown epitaxially on a SrTiO3 substrate to perform time-domain sampling of an x-ray pulse emitted from a synchrotron storage ring. Excitation of the sample with an ultrashort laser pulse triggers coherent expansion and compression waves in the thin layer, which turn the diffraction efficiency on and off at a fixed Bragg angle during 5 ps. This is significantly shorter than the duration of the synchrotron x-ray pulse of 100 ps. Cross-correlation measurements of the ultrafast sample response and the synchrotron x-ray pulse allow to reconstruct the x-ray pulse shape. Y1 - 2012 U6 - https://doi.org/10.1063/1.4769828 SN - 0003-6951 VL - 101 IS - 24 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Navirian, Hengameh A. A1 - Schick, Daniel A1 - Gaal, Peter A1 - Leitenberger, Wolfram A1 - Shayduk, Roman A1 - Bargheer, Matias T1 - Thermoelastic study of nanolayered structures using time-resolved X-ray diffraction at high repetition rate JF - Applied physics letters N2 - We investigate the thermoelastic response of a nanolayered sample composed of a metallic SrRuO3 electrode sandwiched between a ferroelectric Pb(Zr0.2Ti0.8)O-3 film with negative thermal expansion and a SrTiO3 substrate. SrRuO3 is rapidly heated by fs-laser pulses with 208 kHz repetition rate. Diffraction of X-ray pulses derived from a synchrotron measures the transient out-of-plane lattice constant c of all three materials simultaneously from 120 ps to 5 mu s with a relative accuracy up to Delta c/c = 10(-6). The in-plane propagation of sound is essential for understanding the delayed out-of-plane compression of Pb(Zr0.2Ti0.8)O-3. Y1 - 2014 U6 - https://doi.org/10.1063/1.4861873 SN - 0003-6951 SN - 1077-3118 VL - 104 IS - 2 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Sarhan, Radwan Mohamed A1 - Koopman, Wouter-Willem Adriaan A1 - Schuetz, Roman A1 - Schmid, Thomas A1 - Liebig, Ferenc A1 - Koetz, Joachim A1 - Bargheer, Matias T1 - The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol JF - Scientific Reports N2 - Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding. KW - enhanced raman-scattering KW - charge-transfer KW - metal KW - nanoparticles KW - catalysis KW - AU KW - 4-nitrobenzenethiol KW - aminothiophenol KW - photocatalysis KW - wavelength Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-38627-2 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited CY - London ER - TY - JOUR A1 - Herzog, Marc A1 - Schick, Daniel A1 - Leitenberger, Wolfram A1 - Shayduk, Roman A1 - van der Veen, Renske M. A1 - Milne, Christopher J. A1 - Johnson, Steven Lee A1 - Vrejoiu, Ionela A1 - Bargheer, Matias T1 - Tailoring interference and nonlinear manipulation of femtosecond x-rays JF - New journal of physics : the open-access journal for physics N2 - We present ultrafast x-ray diffraction (UXRD) experiments on different photoexcited oxide superlattices. All data are successfully simulated by dynamical x-ray diffraction calculations based on a microscopic model, that accounts for the linear response of phonons to the excitation laser pulse. Some Bragg reflections display a highly nonlinear strain dependence. The origin of linear and two distinct nonlinear response phenomena is discussed in a conceptually simpler model using the interference of envelope functions that describe the diffraction efficiency of the average constituent nanolayers. The combination of both models facilitates rapid and accurate simulations of UXRD experiments. Y1 - 2012 U6 - https://doi.org/10.1088/1367-2630/14/1/013004 SN - 1367-2630 VL - 14 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER -