TY - JOUR A1 - Rizzo, Giovanna A1 - Laurita, Salvatore A1 - Altenberger, Uwe T1 - The Timpa delle Murge ophiolitic gabbros, southern Apennines BT - insights from petrology and geochemistry and consequences to the geodynamic setting JF - Periodico di Mineralogia N2 - The Timpa delle Murge ophiolite in the North Calabrian Unit is part of the Liguride Complex (southern Apennines). The study is concentrated on the gabbroic part of the ophiolite of the Pollino area. They preserve the high-grade ocean floor metamorphic and locally developed flaser textures under ocean floor conditions. The primary magmatic assemblages are clinopyroxene, plagioclase, and opaques. Brown hornblende is a late magmatic phase. Green hornblende, actinolite, albite, chlorite and epidote display metamorphic recrystallization under lower amphibolite facies conditions, followed by greenschist facies. The gabbros show subalkaline near to alkaline character with a tendency to a more calkalkaline trend. The normalization to primitive mantle and mid-ocean ridge basalt (N-MORB) compositions indicates a considerable depletion in Nb, P, Zr and Ti and an enrichment in Ba, Rb, K, Sr and Eu. This points to a mantle source, which is not compatible with a "normal" mid-ocean ridge situation. Rather, the gabbros are generated from a N-MORB-like melt with a strong crustal component, which was influenced by subduction related fluids and episodic melting during mid-ocean-ridge processes. Plausible geodynamic settings of the Timpa delle Murge gabbros are oceanic back-arc positions with embryonic MORB-activities. Similar slab contaminated magmatism is also known from the early stage of island arc formation in supra-subduction zone environments like the Izu-Bonin-Mariana island arc. KW - Southern Apennines KW - Liguride Complex KW - North Calabrian Unit KW - ophiolite KW - gabbros Y1 - 2018 U6 - https://doi.org/10.2451/2018PM741 SN - 0369-8963 VL - 87 IS - 1 SP - 5 EP - 20 PB - Edizioni nuova cultura CY - Roma ER - TY - JOUR A1 - Bsdok, Barbara A1 - Altenberger, Uwe A1 - Concha-Perdomo, Ana Elena A1 - Wilke, Franziska Daniela Helena A1 - Gil-Rodriguez, J. G. T1 - The Santa Rosa de Viterbo meteorite, Colombia BT - New work on it's petrological, geochemical and economical characterization JF - Journal of South American earth sciences N2 - Undifferentiated meteorites, like primitive chondrites, can contain presolar and solar nebula materials which would provide information about the origin and initial conditions of the solar system, whereas differentiated meteorites like iron meteorites, can show early phases of planetary accretion. They also provide the possibility to receive information about core properties and planetary bodies. In addition to the gain in such fundamental scientific knowledge both types are of interest for the exploration of critical raw materials (CRMs) and precious elements. The Santa Rosa de Viterbo meteorite shower, discovered 1810 in the Boyaca province of Colombia, represents a typical iron-nickel meteorite. The present study presents new structural, textural and geochemical results of one fragment of this meteorite, using reflecting microscopy, electron probe micro analyses (EPMA) and electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). The present study presents trace element concentrations of the meteorite's minerals for the first time. The sample is dominated by kamacite (alpha-FeNi). Schreibersite (FeNi3P), taenite (gamma-FeNi) and plessite (mixture of kamacite and taenite) are minor constituents. The occurrence of cohenite ((Fe,Ni,Co)(3)C) and troilite (FeS) are likely. The meteorite sample contains classical Neuman bands passing through kamacite and frequent Widmanstadtten pattern. The bandwidth of kamacite defines the meteorite as finest octahedrite. Geochemically, it is characterized as a "Type IC meteorite". While improving the characterization and classification of the Santa Rosa de Viterbo Iron Meteorite, notable concentrations of Au (>400 ppm) and Ge (>230 ppm) alongside major elements such as Fe, Ni and Co in the bulk composition of that meteorite, were proven. Major and rock-forming minerals such as kamacite and taenite incorporate hundreds of ppm of Ge whereas schreibersite, itself a minor component in that particular meteorite, is the major source for Au (>1400 ppm). In kamacite and taenite also Ir, Pd and Ga were found in minor amounts. Nano-scale inclusions or atomic clusters called nano-nuggets may have been responsible for the high concentrations of Au, Ir, Pd and Ga. Raman and Laser-induced plasma spectroscopes installed in in space probes seems suitable exploration methods for Fe-Ni meteorites, containing Ni-concentrations > 5.8 wt% defining the meteorite as octaedrites. KW - Fe-Ni-Meteorite KW - Geochemistry KW - Colombia KW - Gold KW - Rare elements KW - Space mining Y1 - 2020 U6 - https://doi.org/10.1016/j.jsames.2020.102779 SN - 0895-9811 VL - 104 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Omrani, Hadi A1 - Moazzen, Mohssen A1 - Oberhänsli, Roland A1 - Altenberger, Uwe A1 - Lange, Manuela T1 - The Sabzevar blueschists of the North-Central Iranian micro-continent as remnants of the Neotethys-related oceanic crust subduction JF - International journal of earth sciences N2 - The Sabzevar ophiolites mark the Neotethys suture in east-north-central Iran. The Sabzevar metamorphic rocks, as part of the Cretaceous Sabzevar ophiolitic complex, consist of blueschist, amphibolite and greenschist. The Sabzevar blueschists contain sodic amphibole, epidote, phengite, calcite +/- A omphacite +/- A quartz. The epidote amphibolite is composed of sodic-calcic amphibole, epidote, albite, phengite, quartz +/- A omphacite, ilmenite and titanite. The greenschist contains chlorite, plagioclase and pyrite, as main minerals. Thermobarometry of a blueschist yields a pressure of 13-15.5 kbar at temperatures of 420-500 A degrees C. Peak metamorphic temperature/depth ratios were low (similar to 12 A degrees C/km), consistent with metamorphism in a subduction zone. The presence of epidote in the blueschist shows that the rocks were metamorphosed entirely within the epidote stability field. Amphibole schist samples experienced pressures of 5-7 kbar and temperatures between 450 and 550 A degrees C. The presence of chlorite, actinolite, biotite and titanite indicate greenschist facies metamorphism. Chlorite, albite and biotite replacing garnet or glaucophane suggests temperatures of > 300 A degrees C for greenschist facies. The formation of high-pressure metamorphic rocks is related to north-east-dipping subduction of the Neotethys oceanic crust and subsequent closure during lower Eocene between the Central Iranian Micro-continent and Eurasia (North Iran). KW - Central Iranian micro-continent (CIM) KW - Neotethys Ocean KW - Glaucophane schist KW - Sabzevar KW - Iran Y1 - 2013 U6 - https://doi.org/10.1007/s00531-013-0881-9 SN - 1437-3254 VL - 102 IS - 5 SP - 1491 EP - 1512 PB - Springer CY - New York ER - TY - JOUR A1 - Zozulya, Dmitry R. A1 - Kullerud, Kare A1 - Ribacki, Enrico A1 - Altenberger, Uwe A1 - Sudo, Masafumi A1 - Savchenko, Yevgeny E. T1 - The newly discovered neoproterozoic aillikite occurrence in Vinoren (Southern Norway) BT - age, geodynamic position and mineralogical evidence of diamond-bearing mantle source JF - Minerals N2 - During the period 750-600 Ma ago, prior to the final break-up of the supercontinent Rodinia, the crust of both the North American Craton and Baltica was intruded by significant amounts of rift-related magmas originating from the mantle. In the Proterozoic crust of Southern Norway, the 580 Ma old Fen carbonatite-ultramafic complex is a representative of this type of rocks. In this paper, we report the occurrence of an ultramafic lamprophyre dyke which possibly is linked to the Fen complex, although Ar-40/Ar-39 data from phenocrystic phlogopite from the dyke gave an age of 686 +/- 9 Ma. The lamprophyre dyke was recently discovered in one of the Kongsberg silver mines at Vinoren, Norway. Whole rock geochemistry, geochronological and mineralogical data from the ultramafic lamprophyre dyke are presented aiming to elucidate its origin and possible geodynamic setting. From the whole-rock composition of the Vinoren dyke, the rock could be recognized as transitional between carbonatite and kimberlite-II (orangeite). From its diagnostic mineralogy, the rock is classified as aillikite. The compositions and xenocrystic nature of several of the major and accessory minerals from the Vinoren aillikite are characteristic for diamondiferous rocks (kimberlites/lamproites/UML): Phlogopite with kinoshitalite-rich rims, chromite-spinel-ulvospinel series, Mg- and Mn-rich ilmenites, rutile and lucasite-(Ce). We suggest that the aillikite melt formed during partial melting of a MARID (mica-amphibole-rutile-ilmenite-diopside)-like source under CO2 fluxing. The pre-rifting geodynamic setting of the Vinoren aillikite before the Rodinia supercontinent breakup suggests a relatively thick SCLM (Subcontinental Lithospheric Mantle) during this stage and might indicate a diamond-bearing source for the parental melt. This is in contrast to the about 100 Ma younger Fen complex, which were derived from a thin SCLM. KW - aillikite KW - phlogopite KW - carbonate KW - spinel KW - ilmenite KW - titanite KW - diamond KW - Vinoren KW - Southern Norway Y1 - 2020 U6 - https://doi.org/10.3390/min10111029 SN - 2075-163X VL - 10 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Eugenia Cisterna, Clara A1 - Altenberger, Uwe A1 - Mon, Ricardo A1 - Günter, Christina A1 - Gutierrez, Adolfo Antonio T1 - The metamorphic basement of the southern Sierra de Aconquija, Eastern Sierras Pampeanas BT - Provenance and tectonic setting of a Neoproterozoic back-arc basin JF - Journal of South American earth sciences N2 - The Eastern Sierras Pampeanas are mainly composed of Neoproterozoic-early Palaeozoic metamorphic complexes whose protoliths were sedimentary sequences deposited along the western margin of Gondwana. South of the Sierra de Aconquija, Eastern Sierras Pampeanas, a voluminous metamorphic complex crops out. It is mainly composed of schists, gneisses, marbles, calk-silicate schists, thin layers of amphibolites intercalated with the marbles and granitic veins. The new data correlate the Sierra de Aconquija with others metamorphic units that crop out to the south, at the middle portion of the Sierra de Ancasti. Bulk rock composition reflects originally shales, iron rich shales, wackes, minor litharenites and impure limestones as its protoliths. Moreover, comparisons with the northern Sierra de Aconquija and from La Majada (Sierra de Ancasti) show similar composition. Amphibolites have a basaltic precursor, like those from the La Majada (Sierra de Ancasti) ones. The analyzed metamorphic sequence reflects low to moderate weathering conditions in the sediments source environment and their chemical composition would be mainly controlled by the tectonic setting of the sedimentary basin rather than by the secondary sorting and reworking of older deposits. The sediments composition reveal relatively low maturity, nevertheless the Fe - shale and the litharenite show a tendency of minor maturity among them. The source is related to an acid one for the litharenite protolith and a more basic to intermediate for the other rocks, suggesting a main derivation from intermediate to felsic orogen. The source of the Fe shales may be related to and admixture of the sediments with basic components. Overall the composition point to an upper continental crust as the dominant sediment source for most of the metasedimentary rocks. The protolith of the amphibolites have basic precursors, related to an evolving back-arc basin. The chemical data in combination with the specific sediment association (wackes, shales, Fe-shales and minor litharenites) are characteristic for turbidity currents deposits along tectonically active region. They are also commonly associated with calcareous clays (marbles), commonly observed in the evolution of basins with slope and shelf derived carbonate turbidites. The amphibolites members are probably derived from lava-flows synchronous with the sedimentation during the basin evolution. The basin was controlled by a continental island arc possible evolving to a back-arc setting, as indicated for the mixed nature of the inferred source. The metasedimentary sequence from the Cuesta de La Chilca have petrographic, structural and strong chemical similarities, building a north-south striking belt from the north of the Sierra de Aconquija and to the south along the Sierra de Ancasti (La Majada area). The observed similarities allow to present this portion of the Eastern Sierras Pampeanas as a crustal block that records the sedimentary sequences developed along the geodynamic context of the southwestern margin of Gondwana during the Neoproterozoic and Early Palaeozoic. (C) 2017 Elsevier Ltd. All rights reserved. KW - Metasedimentary succession KW - Geochemical records KW - Sierra de Aconquija KW - Eastern Sierras Pampeanas KW - NW Argentina Y1 - 2017 U6 - https://doi.org/10.1016/j.jsames.2017.09.028 SN - 0895-9811 VL - 82 SP - 292 EP - 310 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Altenberger, Uwe A1 - Kruhl, J. H. T1 - The long life of a thin and dry-temperature shear zone in the Hercynian lower crust of Calabria (s.Italy) Y1 - 1997 ER - TY - JOUR A1 - Quandt, Dennis A1 - Trumbull, Robert B. A1 - Altenberger, Uwe A1 - Cardona, Agustin A1 - Romer, Rolf L. A1 - Bayona, Germán A. A1 - Ducea, Mihai N. A1 - Valencia, Victor A1 - Vasquez, Monica A1 - Cortes, Elizabeth A1 - Guzman, Georgina T1 - The geochemistry and geochronology of Early Jurassic igneous rocks from the Sierra Nevada de Santa Marta, NW Colombia, and tectono-magmatic implications JF - Journal of South American earth sciences N2 - The Sierra Nevada de Santa Marta in NW Colombia is an isolated massif at the northernmost end of the Andes chain near the boundary with the Caribbean plate. Previous geologic mapping and K-Ar dating have shown that Jurassic plutonic and volcanic units make up a large part of the Santa Marta Massif (SMM). These rocks have been considered to be part of a Jurassic magmatic arc extending from NW Colombia to northern Chile, but without any geochemical basis for comparison. This paper reports on a geochemical and Sr-Nd-Pb isotope study of the Jurassic rocks in the SMM and provides 12 new U-Pb zircon ages from in-situ laser ICP-MS dating. The plutonic and volcanic units span a range from 45 to 78 wt.% SiO2, with a dominance of intermediate to felsic compositions with SiO2 > 57 wt.%. They classify as calc-alkaline, medium to high-K, metaluminous rocks with trace-element features typical for arc-derived magma series. In terms of their major and trace-element compositions, the SMM Jurassic units overlap with contemporary plutonic and volcanic rocks from other regions of the Central and Eastern Cordilleras of Colombia, and confirm an arc affinity. The new U-Pb ages range from 176 +/- 1 Ma to 192 +/- 2 Ma (n = 12), with most between 180 and 188 Ma (n = 7). The initial Sr isotope ratios (at 180 Ma) are between 0.7012 and 0.7071 (n = 29), with 3 outliers attributed to mobilization of Rb and/or Sr, Nearly all samples have negative( )epsilon Nd-(180) values between - 10.3 and 0.0 (n = 30), the two exceptions being only slightly positive (1.1 and 1.9). Measured Pb isotope ratios fall in a narrow range, with Pb-206/Pb-204 from 18.02 to 19.95, (207) Pb/(204) Pb from 15.56 to 15.67 and Pb-208/Pb-204 from 37.76 to 39.04 (n = 28). In the regional context of previous studies, these results confirm early Jurassic ages and an arc affinity for the widespread magmatism exposed in the eastern and northeastern Colombian Andes. We also note patterns in the distribution and composition of magmas. The magmatic activity in the Central Cordillera tends to be younger than in the Eastern Cordillera and is spatially more restricted to the vicinity of regional fault systems. In terms of composition, Jurassic igneous rocks in the Eastern Cordillera have systematically lower epsilon Nd-(180) values than those from the Central Cordillera, whereas the Pb isotope ratios overlap. We ascribe the Nd isotope variations to heterogeneity in the mantle source and/or degree of crustal contamination, whereas the Pb isotope ratios are crust-dominated and similar throughout the region. The spatio-temporal and compositional evolution of Jurassic magmatic rocks in the Northern Andes reflect the major plate kinematic readjustment between the Triassic and the Early Jurassic in the proto-Andean margin. KW - Jurassic arc KW - Northern Andes KW - Sr-Nd-Pb isotopes KW - Geochronology Y1 - 2018 U6 - https://doi.org/10.1016/j.jsames.2018.06.019 SN - 0895-9811 VL - 86 SP - 216 EP - 230 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Altenberger, Uwe A1 - Mejia Jimenez, D. M. A1 - Günter, C. A1 - Sierra Rodriguez, G. I. A1 - Scheffler, F. A1 - Oberhänsli, Roland T1 - The Garzn Massif, Colombia-a new ultrahigh-temperature metamorphic complex in the early Neoproterozoic of northern South America JF - Mineralogy and petrology N2 - The Garzn Complex of the Garzn Massif in SW Colombia is composed of the Vergel Granulite Unit (VG) and the Las Margaritas Migmatite Unit (LMM). Previous studies reveal peak temperature conditions for the VG of about 740 A degrees C. The present study considers the remarkable exsolution phenomena in feldspars and pyroxenes and titanium-in-quartz thermometry. Recalculated ternary feldspar compositions indicate temperatures around 900-1,000 A degrees C just at or above the ultra-high temperature-metamorphism (UHTM) boundary of granulites. The calculated temperatures range of exsolved ortho- and clinopyroxenes also supports the existence of an UHTM event. In addition, titanium-in-quartz thermometry points towards ultra-high temperatures. It is the first known UHTM crustal segment in the northern part of South America. Although a mean geothermal gradient of ca 38 A degrees C km(-1) could imply additional heat supply in the lower crust controlling this extreme of peak metamorphism, an alternative model is suggested. The formation of the Vergel Granulite Unit is supposed to be formed in a continental back-arc environment with a thinned and weakened crust behind a magmatic arc (Guapotn-Mancagua Gneiss) followed by collision. In contrast, rocks of the adjacent Las Margaritas Migmatite Unit display "normal" granulite facies temperatures and are formed in a colder lower crust outside the arc, preserved by the Guapotn-Mancagu Gneiss. Back-arc formation was followed by inversion and thickening of the basin. The three units that form the modern-day Garzn Massif, were juxtaposed upon each other during collision (at ca. 1,000 Ma) and exhumation. The collision leading to the deformation of the studied area is part of the Grenville orogeny leading to the amalgamation of Rodinia. Y1 - 2012 U6 - https://doi.org/10.1007/s00710-012-0202-1 SN - 0930-0708 VL - 105 IS - 3-4 SP - 171 EP - 185 PB - Springer CY - Wien ER - TY - JOUR A1 - Lopez, Jose P. A1 - Altenberger, Uwe A1 - Bellos, Laura I. A1 - Günter, Christina T1 - The Cumbres Calchaquies Range (NW-Argentina) BT - Geochemical sedimentary provenance, tectonic setting and metamorphic evolution of a Neoproterozoic sedimentary basin JF - Journal of South American earth sciences N2 - The Cumbres Calchaquies Range forms part of the Famatinian metamorphic basement of the Eastern Sierras Pampeanas. The sedimentary protoliths of the metamorphic sequence were deposited in a marine basin alongside the western margin of Gondwana during the Neoproterozoic. New petrologic, geochemical and thermobarometric data give insight into the evolution of the sedimentary basin, its sediment source area, its later metamorphic overprint and its regional relationship to other parts of the Famatinian basement. The metamorphic series studied here consists of banded schists and gneisses and rare calcsilcate-rocks and migmatites that have been reworked by mid-to deep-crustal metamorphic and tectonic processes. The bulk rock compositions indicate shale, wacke, marl and litharenitic protoliths. The metamorphosed elastic sediments have major and trace element compositions indicating a continental granitoid-dominated source area with low sediment recycling. Low SiO2/Al2O3 ratios suggest a relatively low maturity of the sedimentary protoliths. Therefore, the Cumbres Calchaquies section represents a sequence of turbidity currents with progressive shallowing of the depositional environment, as indicated by quartz- and carbonate-rich sediments. The overall data are consistent with the geodynamic environment of a basin adjacent to a continental magmatic arc as the most probable scenario. Whereas the sedimentary protoliths of the metamorphic basement in the Sierra de Ancasti and Sierra de Aconquija, located ca 100-300 km south of the study area are interpreted as originating in an evolving back-arc basin, our results from the Cumbres Calchaquies region indicate a sedimentary source in a felsic continental arc with no significant influx of basic rocks. The Famatinian metamorphic evolution of the Cumbres Calchaquies rocks is of typical Barrow-type, culminating in partial melting of the metasediments. Conventional thermobarometry combined with thermodynamic models (pseudosections) reveal a prograde evolution reaching peak conditions of ca 665 degrees C/6.1 Kbar. This implies a geothermal gradient of ca 35 degrees C/km, which is slightly higher than the average for continental crust and suggests a period of crustal thinning, as known from back-arc basins, or additional heat supply by voluminous intrusions. KW - NW Argentina KW - Eastern Sierras Pampeanas KW - Cumbres Calchaquies KW - Geothermobarometry KW - Geochemistry KW - Metamorphic evolution KW - Provenance studies Y1 - 2019 U6 - https://doi.org/10.1016/j.jsames.2019.03.016 SN - 0895-9811 VL - 93 SP - 480 EP - 494 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Ribacki, Enrico A1 - Trumbull, Robert B. A1 - Lopez De Luchi, Monica Graciela A1 - Altenberger, Uwe T1 - The chemical and B-Isotope composition of Tourmaline from intra-granitic Pegmatites in the Las Chacras-Potrerillos Batholith, Argentina JF - The Canadian mineralogist : journal of the Mineralogical Association of Canada N2 - The Devonian Las Chacras-Potrerillos batholith comprises six nested monzonitic to granitic intrusions with metaluminous to weakly peraluminous composition and a Sr-Nd isotopic signature indicating a dominantly juvenile mantle-derived source. The chemically most evolved units in the southern batholith contain a large number of intra-granitic, pod-shaped tourmaline-bearing pegmatites. This study uses in situ chemical and boron isotopic analyses of tourmaline from nine of these pegmatites to discuss their relationship to the respective host intrusions and the implications of their B-isotope composition for the source and evolution of the magmas. The tourmalines reveal a diversity in element composition (e.g., FeO, MgO, TiO2, CaO, MnO, F) which distinguishes individual pegmatites from one another. However, all have a narrow 5 11 B range of -13.7 to -10.5%0 (n = 100) which indicates a relatively uniform magmatic system and similar temperature conditions during tourmaline crystallization. The average delta(11) B value of -11.7%0 is typical for S-type granites and is within the range reported for peraluminous granites. pegmatites, and metamorphic units of the Ordovician basement into which the Las Chacras-Potrerillos batholith intruded. The B-isotope evidence argues for a crustal boron source like that of the Ordovician basement, in contrast to the metaluminous to weakly peraluminous composition and juvenile initial Sr and Nd isotope ratios of the Las Chacras-Potrerillos batholith magmas. We propose that the boron was not derived from the magma source region but was incorporated from dehydration melting of elastic metasedimentary rocks higher up in the crustal column. KW - pegmatite KW - tourmaline KW - SIMS KW - B-isotopes KW - Las Chacras-Potrerillos KW - Sierra de San Luis KW - Argentina Y1 - 2022 U6 - https://doi.org/10.3749/canmin.2100036 SN - 0008-4476 SN - 1499-1276 VL - 60 IS - 1 SP - 49 EP - 66 PB - Association of Canada CY - Ottawa ER - TY - JOUR A1 - Altenberger, Uwe A1 - Cisterna, Clara A1 - Günter, Christina A1 - Gutiérrez, Adolfo Antonio A1 - Rosales, J. T1 - Tectono-metamorphic evolution of the proto-Andean margin of Gondwana BT - Evidence of internal high-grade metamorphism along the northern portion of the Famatinian orogen, Sierra de Aconquija, Sierras Pampeanas Orientales, Argentina JF - Journal of South American earth sciences N2 - The present work gives a detailed analysis of the metamorphic and structural evolution of the back-arc portion of the Famatinian Orogen exposed in the southern Sierra de Aconquija (Cuesta de La Chilca segment) in the Sierras Pampeanas Orientales (Eastern Pampean Sierras). The Pampeanas Orientales include from north to south the Aconquija, Ambato and Ancasti mountains. They are mainly composed of middle to high grade metasedimentary units and magmatic rocks. At the south end of the Sierra de Aconquija, along an east to west segment extending over nearly 10 km (Cuesta de La Chilca), large volumes of metasedimentary rocks crop out. The eastern metasediments were defined as members of the El Portezuelo Metamorphic-Igneous Complex (EPMIC) or Eastern block and the western ones relate to the Quebrada del Molle Metamorphic Complex (QMMC) or Western block. The two blocks are divided by the La Chilca Shear Zone, which is reactivated as the Rio Chanarito fault. The EPMIC, forming the hanging wall, is composed of schists, gneisses and rare amphibolites, calc- silicate schists, marbles and migmatites. The rocks underwent multiple episodes of deformation and a late high strain-rate episode with gradually increasing mylonitization to the west. Metamorphism progrades from a M-1 phase to the peak M-3, characterized by the reactions: Qtz + Pl + Bt +/- Ms -> Grt + Bt(2) + Pl(2) +/- Sil +/- Kfs, Qtz + Bt + Sil -> Crd + Kfs and Qtz + Grt + Sil -> Crd. The M-3 assemblage is coeval with the dominant foliation related to a third deformational phase (D-3). The QMMC, forming the foot wall, is made up of fine-grained banded quartz - biotite schists with quartz veins and quartz-feldspar-rich pegmatites. To the east, schists are also overprinted by mylonitization. The M-3 peak assemblage is quartz + biotite + plagioclase +/- garnet +/- sillimanite +/- muscovite +/- ilmenite +/- magnetite +/- apatite. The studied segment suffered multiphase deformation and metamorphism. Some of these phases can be correlated between both blocks. D-1 is locally preserved in scarce outcrops in the EPMIC but is the dominant in the QMMC, where S-1 is nearly parallel to S-0. In the EPMIC, D-2 is represented by the S-2 foliation, related to the F-2 folding that overprints S-1, with dominant strike NNW - SSE and high angles dip to the E. D-3 in the EPMIC have F-3 folds with axis oblique to S-2; the S-3 foliation has striking NW - SE dipping steeply to the E or W and develops interference patterns. In the QMMC, S-2 (D-2) is a discontinuous cleavage oblique to S-1 and transposed by S-3 (D-3), subparallel to S-1. Such structures in the QMMC developed at subsolidus conditions and could be correlated to those of the EPMIC, which formed under higher P-T conditions. The penetrative deformation D-2 in the EPMIC occurred during a prograde path with syntectonic growth of garnet reaching P-T conditions of 640 degrees C and 0.54 GPa in the EPMIC. This stage was followed by a penetrative deformation D-3 with syn-kinematic growth of garnet, cordierite and plagioclase. Peak P-T conditions calculated for M-3 are 710 degrees C and 0.60 GPa, preserved in the western part of the EPMIC, west of the unnamed fault. The schists from the QMMC suffered the early low grade M-1 metamorphism with minimum PT conditions of ca 400 degrees C and 0.35 GPa, comparable to the fine schists (M-1) outcropping to the east. The D-2 deformation is associated with the prograde M-2 metamorphism. The penetrative D-3 stage is related to a medium grade metamorphism M-3, with peak conditions at ca 590 degrees C and 0.55 GPa. The superimposed stages of deformation and metamorphism reaching high P-T conditions followed by isothermal decompression, defining a clockwise orogenic P-T path. During the Lower Paleozoic, folds were superimposed and recrystallization as well as partial melting at peak conditions occurred. Similar characteristics were described from the basement from other Famatinian-dominated locations of the Sierra de Aconquija and other ranges of the Sierras Pampeanas Orientales. KW - Famatinian KW - Sierras Pampeanas Orientales KW - Cuesta de la chilca KW - PT path Y1 - 2021 U6 - https://doi.org/10.1016/j.jsames.2021.103305 SN - 0895-9811 VL - 110 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Hetzel, Ralf A1 - Altenberger, Uwe A1 - Strecker, Manfred T1 - Structural and chemical evolution of pseudotachylytes during seismic events Y1 - 1996 ER - TY - JOUR A1 - Altenberger, Uwe T1 - Strain localization mechanisms in deep seated layered rocks Y1 - 1997 ER - TY - JOUR A1 - Wendt, A. S. A1 - Altenberger, Uwe A1 - D'arco, T1 - Radial cracks around chromite inclusions in olivine : a new geothermobarometer based on the thermoelastic properties of chromite and forsterite-rich olivine Y1 - 1998 ER - TY - JOUR A1 - Chemam, Asma A1 - Hadjzobir, Soraya A1 - Daif, Menana A1 - Altenberger, Uwe A1 - Günter, Christina T1 - Provenance analyses of the heavy-mineral beach sands of the Annaba coast, northeast Algeria, and their consequences for the evaluation of fossil placer deposit JF - Journal of earth system science N2 - The paper presents the first study of heavy-mineral sand beaches from the Mediterranean coast of Annaba/Algeria. The studied beaches run along the basement outcrops of the Edough massif, which are mainly composed by micaschists, tourmaline-rich quartzo-feldspathic veins, gneisses, skarns and marbles. Sand samples were taken from three localities (Ain Achir, Plage-Militaire and El Nasr). The heavy-mineral fraction comprises between 74 and 91 vol%. The garnets of the beaches are almandine rich and tourmalines vary with respect to their location from schorl to dravite. Tourmaline at Ain Achir and the Plage-Militaire is schorlits, while at El Nasr beach dravite is ubiquitous. The World Shale Average normalised REE of the sands and the basement outcrops reveal: (i) Ain Achir beach: REE pattern of sand and the coastal rocks from the studied beaches reflects a multiple sources; (ii) Plage-Militaire: the sand and the coastal outcrops show similar LREE and a strong enrichment in HREE, suggesting the presence HREE-rich phases found as inclusions in staurolite; (iii) El Nasr: two types of sand patterns are found: one with flat REE pattern similar to the proximal rocks and other one enriched in HREE suggesting a mixed source. KW - Provenance KW - heavy minerals KW - beach sediments KW - fossil placer KW - geochemistry KW - Annaba KW - Algeria Y1 - 2018 U6 - https://doi.org/10.1007/s12040-018-1019-z SN - 0253-4126 SN - 0973-774X VL - 127 IS - 8 PB - Indian Academy of Science CY - Bangalore ER - TY - JOUR A1 - Schmid, Robert A1 - Altenberger, Uwe A1 - Oberhänsli, Roland T1 - Polyphase tectono-metamorphic evolution of the northwestern Lindas Nappe on Holsnoy, Bergen Arcs, Caledonides, SW-Norway Y1 - 1998 ER - TY - JOUR A1 - Birtel, Sandra A1 - Altenberger, Uwe A1 - Passchier, C. W. T1 - Polyphase structural and metamorphic evolution of the Rossland shear zone at Holsnoy island, a ductile nappe boundary in the Middle Allochthon of the Norwegian Caledonides Y1 - 1998 ER - TY - JOUR A1 - Yu, S. A1 - Altenberger, Uwe A1 - Sun, Y. T1 - Petrology, geochemistry, and tectonic setting of the Shangdan Metamorphic Sandstone ; Shangdan Suture Zone, Qinling Mountains (Central) Y1 - 1998 ER - TY - JOUR A1 - Hoehnel, Desirée A1 - Reimold, Wolf Uwe A1 - Altenberger, Uwe A1 - Hofmann, Axel A1 - Mohr-Westheide, Tanja A1 - Oezdemir, Seda A1 - Köberl, Christian T1 - Petrographic and Micro-XRF analysis of multiple archean impact-derived spherule layers in drill core CT3 from the northern Barberton Greenstone Belt (South Africa) JF - Journal of African earth sciences / Geological Society of Africa N2 - The Archean spherule layers (SLs) of the Barberton Greenstone Belt (BGB, South Africa) and Pilbara Craton (Australia) are the only known evidence of early, large impact events on Earth. Spherules in these layers have been, alternatively, interpreted as molten impact ejecta, condensation products from an impact vapor cloud, or ejecta from impact craters melted during atmospheric re-entry. Recently, a new exploration drill core (CT3) from the northern BGB revealed 17 SL intersections. Spherules are densely packed, sand-sized, and variably rounded or deformed. The CT3 SLs are intercalated with black and brown shale, and laminated chert. The determination of the original number of impact events that are represented by these multiple SLs is central to the present paper. A comprehensive study of the sedimentary and petrographic characteristics of these SLs involved the determination of the size, shape and types of individual spherules, as well as their mineralogy. CT3 SLs consist of K-feldspar, phyllosilicate, siderite, dolomite, quartz, Ti- and Fe-oxides, as well as apatite. In addition, small amounts of carbonaceous, presumably organic material are observed in several spherules at 145 and 149 m depth. Only Ni-rich Cr-spinel (up to 11 wt% NiO) crystals, rare zircon grains, and alloys of platinum group elements ± Fe or Ni represent primary phases in these thoroughly altered strata. The 0.3 to 2.6-mm-sized spherules can be classified into four types: 1. Spherules crystallized completely with secondary K-feldspar (subtype 1A) or phyllosilicate (subtype 1B); spherules completely filled with Ti- and Fe-oxides (subtype 1C); spherules containing disordered or radially oriented, fibrous and lath-shaped K-feldspar textures (subtype 1D); or subtype 1B spherules that contain significant Cr-spinel (subtype 1E); 2. zoned compositions with these types 1A and/or 1B minerals (subtype 2A); spherules that contain central or marginal vesicles (subtype 2B); subtype 1B spherules whose rims consist of Ti and Fe-oxides (subtype 2C); 3. deformed spherules (subtype 3A) - of all types; (B) subtype 1B spherules are assimilated into groundmass; (C) open spherules or spherules with collapsed rims; and 4. interconnected spherules of type 1A. A few spherules show botryoidal devitrification textures interpreted to result from rapid cooling/devitrification of former melt droplets. SL 15 at a depth of 145 m is unique in being the only grain-size sorted SL; this bed may have been deposited by fallout through a water column. The SL and their host rocks can be easily distinguished by their significant differences in micro-XRF elemental distribution maps. Depending on which aspects of the SLs are primarily considered (such as similar geochemistry, similar layering, SL occurrences abundant at three different depth intervals), the 17 CT3 SLs can be assigned to three or up to 13 individual impact events. Uncertainty about the actual number of impact events represented remains, however, due to the complex folding deformation observed throughout the drill core. KW - Archean spherule layers KW - Barberton Greenstone Belt KW - Petrography KW - Micro-XRF KW - Record of multiple impacts Y1 - 2017 U6 - https://doi.org/10.1016/j.jafrearsci.2017.11.020 SN - 1464-343X SN - 1879-1956 VL - 138 SP - 264 EP - 288 PB - Elsevier Science CY - Oxford ER - TY - JOUR A1 - Hajialioghli, Robab A1 - Moazzen, Mohssen A1 - Jahangiri, Ahmad A1 - Oberhänsli, Roland A1 - Mocek, Beate A1 - Altenberger, Uwe T1 - Petrogenesis and tectonic evolution of metaluminous sub-alkaline granitoids from the Takab Complex, NW Iran JF - Geological magazine N2 - The Takab complex is composed of a variety of metamorphic rocks including amphibolites, metapelites, mafic granulites, migmatites and meta-ultramafics, which are intruded by the granitoid. The granitoid magmatic activity occurred in relation to the subduction of the Neo-Tethys oceanic crust beneath the Iranian crust during Tertiary times. The granitoids are mainly granodiorite, quartz monzodiorite, monzonite and quartz diorite. Chemically, the magmatic rocks are characterized by ASI < 1.04, AI < 0.87 and high contents of CaO (up to similar to 14.5 wt %), which are consistent with the I-type magmatic series. Low FeO(t)/(FeO(t)+MgO) values (< 0.75) as well as low Nb, Y and K(2)O contents of the investigated rocks resemble the calc-alkaline series. Low SiO(2), K(2)O/Na(2)O and Al(2)O(3) accompanied by high CaO and FeO contents indicate melting of metabasites as an appropriate source for the intrusions. Negative Ti and Nb anomalies verify a metaluminous crustal origin for the protoliths of the investigated igneous rocks. These are comparable with compositions of the associated mafic migmatites, in the Takab metamorphic complex, which originated from the partial melting of amphibolites. Therefore, crustal melting and a collision-related origin for the Takab calc-alkaline intrusions are proposed here on the basis of mineralogy and geochemical characteristics. The P-T evolution during magmatic crystallization and subsolidus cooling stages is determined by the study of mineral chemistry of the granodiorite and the quartz diorite. Magmatic crystallization pressure and temperature for the quartz-diorite and the granodiorite are estimated to be P similar to 7.8 +/- 2.5 kbar, T similar to 760 +/- 75 degrees C and P similar to 5 +/- 1 kbar, T similar to 700 degrees C, respectively. Subsolidus conditions are consistent with temperatures of similar to 620 degrees C and similar to 600 degrees C, and pressures of similar to 5 kbar and similar to 3.5 kbar for the quartz-diorite and the granodiorite, respectively. KW - granitoids KW - partial melting KW - Neo-Tethys KW - Takab KW - NW Iran Y1 - 2011 U6 - https://doi.org/10.1017/S0016756810000683 SN - 0016-7568 VL - 148 IS - 2 SP - 250 EP - 268 PB - Cambridge Univ. Press CY - New York ER -